Received: 24 January 2017

Revised: 30 April 2018

Accepted: 29 March 2019

DOI: 10.1111/coin.12211

ORIGINAL ARTICLE

WILEY &’:ﬁﬁ:&;ﬂ‘

On the predictability of domain-independent
temporal planners

Isabel Cenamor! | Mauro Vallati?

!Department of Computer Science and
Engineering, Universidad Carlos III de
Madrid, Getafe, Spain

2School of Computing and
Engineering, University of
Huddersfield, Huddersfield, UK

3Department of Computer Science,
Czech Technical University in Prague,
Prague, Czech Republic

4Department of Theoretical Computer
Science and Mathematical Logic,
Charles University in Prague, Prague,
Czech Republic

Correspondence

Mauro Vallati, School of Computing
and Engineering, University of
Huddersfield, Queensgate,
Huddersfield HD1 3DH, UK.

Email: m.vallati@hud.ac.uk

Funding information

Czech Science Foundation,
Grant/Award Number: 18-07252S;
Operational Programme for Research,
Development and Education

(OP VVV), Grant/Award Number:
CZ.02.1.01/0.0/0.0/16_019/0000765

| Luka$ Chrpa*

Abstract

Temporal planning is a research discipline that addresses
the problem of generating a totally or a partially ordered
sequence of actions that transform the environment from
some initial state to a desired goal state, while taking into
account time constraints and actions’ duration. For its abil-
ity to describe and address temporal constraints, tempo-
ral planning is of critical importance for a wide range of
real-world applications. Predicting the performance of tem-
poral planners can lead to significant improvements in the
area, as planners can then be combined in order to boost
the performance on a given set of problem instances.

This paper investigates the predictability of the
state-of-the-art temporal planners by introducing a new
set of temporal-specific features and exploiting them for
generating classification and regression empirical perfor-
mance models (EPMs) of considered planners. EPMs are
also tested with regard to their ability to select the most
promising planner for efficiently solving a given temporal
planning problem.

Our extensive empirical analysis indicates that the
introduced set of features allows to generate EPMs that
can effectively perform algorithm selection, and the use of
EPMs is therefore a promising direction for improving the
state of the art of temporal planning, hence fostering the
use of planning in real-world applications.

KEYWORDS

automated planning, predicting performance, temporal planning

Computational Intelligence. 2019;1-29.

wileyonlinelibrary.com/journal/coin

© 2019 Wiley Periodicals, Inc.

https://doi.org/10.1111/coin.12211
https://orcid.org/0000-0002-8429-3570
https://orcid.org/0000-0001-9713-7748

x| Computational CENAMOR ET AL,
WlLEYﬂ M
1 | INTRODUCTION

Predicting performance of solvers is an important research direction boosting performance via
per-instance solver selection as well as providing interesting insights into aspects that affect
solvers' behavior. Prominent examples of the successful application of performance-predicting
techniques can be found in combinatorial search,' especially in Satisfiability (SAT),? answer set
programming (ASP),? classical planning,* and abstract argumentation.’

Predictions are possible by exploiting empirical performance models (EPMs),® which are built
by (i) observing the performance of solvers on a large set of training instances, (ii) extracting
instance-specific features from each training problem, and (iii) learning a predictive model that
maps features’ value with the observed performance. Each feature is either a number or a categor-
ical value that represents a property of the domain or problem model (eg, the number of objects).
Predictions can then be exploited for selecting promising algorithms or for combining algorithms
into a portfolio.’

EPMs are well established in artificial intelligence and have been considered in the plan-
ning literature since the 1990s. Fink® exploited the problem size feature for predicting runtime
through linear regression, Howe et al’ used five features for predicting the performance of
six planners, and the subsequent work by Roberts et al'® and Roberts and Howe'' provided a
larger set of features focused on problem model—written in the Planning Domain Definition
Language (PDDL)—statistics and increased the number of considered planners. Most recently,
Cenamor et al'*'® further expanded the feature set by including information about the causal
graph (CG) and the domain transition graph (DTG)."* Fawcett et al* also considered features
computed by encoding the planning problem as a SAT formula and by analyzing the search
space topology. On slightly different tasks, Gerevini et al'> exploited planning features for pre-
dicting the length of a makespan-optimal solution plan of a given problem, whereas Vallati et al'¢
provided a features-based approach for improving the efficiency of case-base planning systems.
State-of-the-art planning EPMs are focused on classical planning, where actions are executed
instantly and no numerical or temporal aspects are considered, and they do not guarantee the abil-
ity to predict planners’ performance on more expressive planning models. Real-world planning
applications, however, usually require to reason also in terms of time constraints; actions are not
executed instantly, and it might be necessary to run some actions concurrently. Hence, improve-
ments in temporal planning can have a significant impact on most of the planning applications
and foster the use of planning in real-world scenarios.

In this paper, we

« introduce a new set of features that are specific to problems dealing with durative actions and
temporal constraints,

« combine the introduced features with existing “classical” (propositional) features,

« use the features to generate classification EPMs that predict whether a planner solves a given
problem or not,

« use the features to generate regression EPMs that predict the runtime of a planner on a given
problem,

« extract a small subset of the representative set of features, and

« exploit the EPMs for algorithm selection, ie, selecting the appropriate planning engine for a
given problem.

Our extensive empirical analysis aims at demonstrating that (i) the generated EPMs are accu-
rate, (ii) the selected subset of features is representative, and (iii) the algorithm selection method

CENAMOR ET AL. WIL Eyﬂ Eﬁ:ﬂwﬁmu_s

based on the generated EPMs outperforms basic planning engines. Our analysis also provides
insights on the state of the art of temporal planning systems that could be fruitfully exploited for
improving future planning engines.

The remainder of this paper is organized as follows. First, we discuss related work. We then
provide the relevant background on automated planning. Section 4 introduces the set of exploited
features. After that, we describe the experimental settings and the framework exploited for the
analysis. Then, we analyze the performance of EPMs based on classification and regression and
how the EPMs can be exploited for algorithm selection. Finally, we give conclusions.

2 | RELATED WORK

EPMs can be used to predict the performance of algorithms on previously unseen inputs such
as problem instances or parameters settings. One of the early applications of EPMs was in SAT,
where EPMs have been used for predicting how much time a given algorithm will need to find a
solution to a given formula.®!®

Gomes and Selman® conducted a theoretical and experimental study on the parallel run of
stochastic algorithms for solving computationally hard search problems. Their work shows under
what conditions running different stochastic algorithms in parallel can give a computational
gain over running multiple copies of the same stochastic algorithm in parallel. The empirical
hardness of combinatorial problems, which refers to how difficult it is to solve a given problem
for a given algorithm, has then been studied by Leyton-Brown et al.?* More recently, the work
of Leyton-Brown et al was extended to create models that are able to predict the runtime of
algorithms solving uniform random 3-SAT problems, and the resulting framework was called
SATzilla.> SATzilla, which has then been extended for dealing with many different SAT problems,
is one of the most successful portfolios at the state of the art, and it has been awarded in many
tracks and editions of the SAT competition.” By extracting information from SAT instances, under
the form of features, it predicts the runtime of algorithms by using EPMs; on the basis of such
predictions, SATzilla selects the most promising solvers to be executed on the given SAT instance.

Another successful portfolio-based approach for SAT is instance-specific algorithm config-
uration (ISAC),? which exploits a pool of different configurations of the same solver. Given a
previously unseen instance, ISAC exploits EPMs for selecting the most suitable configuration, in
order to minimize the expected runtime.

Another area in which EPMs and portfolio approaches have been extensively studied is ASP.
A prominent example is claspfolio,® which exploits regression-based EPMs for selecting, among a
range of predefined configurations of the well-known ASP solver clasp,? the best configuration to
minimize the runtime on a given ASP instance. Predictions are made according to a set of features
that are extracted from the considered ASP problem. An improved version of claspfolio, called
claspfolio 2, provides a modular architecture that extends the provided set of techniques by inte-
grating new approaches for extracting features, predicting solvers' performance, and combining
solvers into a portfolio.

Portfolio approaches have been studied and exploited also in classical planning. BUS’ is
the first approach in which a static portfolio has been tested and implemented for solving
planning problems. The authors tested the performance of six planners on over 200 problems

*http://www.satcompetition.org

4_|_WI L Eyﬂ g:mmm“l CENAMOR ET AL

(all the available benchmarks at that time). According to the observed performance, they then
identified a suitable control strategy for combining weaknesses and strengths of the considered
planners. Other well-known examples of static portfolios for classical planning include PbP,* Fast
Downward Stone Soup,* and Cedalion.?® These approaches, after observing the performance of a
set of planners on training instances, generate a single portfolio that is then used for solving any
(previously unseen) planning problem.

EPMs in classical planning have been exploited also for dynamic planning portfolios that
combine the most promising planners into portfolios according to a given planning instance.
IBaCoP2,” which is a good example of a dynamic planning portfolio approach, exploits EPMs for
selecting the most promising planners (from a given set) for maximizing the quality of the solu-
tion plans. IBaCoP2 took part in the 2014 edition of the International Planning Competition (IPC)
and won the sequential satisficing track.® Another dynamic portfolio approach, AIIPACA (all
planners automatic choice algorithm),?® took part in the optimal track of the same competition.
AlIPACA is a portfolio that selects the most promising optimal planner to run on a given planning
task. A comparison of static and dynamic portfolio techniques, focused on optimal planning, has
been recently done by Rizzini et al.*°

3 1| AUTOMATED PLANNING

Automated planning deals with finding a (partially or totally ordered) sequence of actions
transforming the environment from a given initial state to a desired goal state.*

3.1 | Classical planning

Classical planning assumes a static, deterministic, and fully observable environment where action
effects are instantaneous.

In the classical representation, the environment is specified via first-order logic predi-
cates. States of the environment are represented as sets atoms, fully grounded predicates. A
planning operatoro = (name(o), pre(o), eff ~(0), eff *(0)) is specified such that name(o) =
op_name(xy, ...,X;) (op_name is a unique operator name, and X, ..., X, are variable symbols
(arguments) appearing in the operator), pre(o) is a set of predicates representing the operator's
preconditions, and eff ~(0) and eff *(0) are sets of predicates representing the operator's nega-
tive and positive effects. Actions are fully grounded instances of planning operators. An action
a = (pre(a), eff (a), eff *(a)) is applicable in a state s if and only if pre(a) C s. The application of
a in s (if possible) results in a state (s \ eff “(a)) U eff *(a).

A planning domain is specified via sets of predicates and planning operators. A planning
problem is specified via a planning domain, an initial state, and a set of goal atoms. A solution plan
is a sequence of actions such that a consecutive application of the actions in the plan (starting in
the initial state) results in a state that satisfies the goal.

3.2 | Temporal planning

Temporal planning extends classical planning by incorporating the notion of time. Action appli-
cation (or execution) takes time, and thus, action effects might not be instantaneous. In this

CENAMOR ET AL. WIL Eyﬂ Eﬂ;ﬁwﬁmu_s

paper, we consider the restricted form of temporal planning supported in PDDL 2.1* since it is
supported by a range of planning engines. Alternatively, temporal planning tasks can be mod-
eled, for instance, in the New Domain Definition Language® and solved by using the EUROPA
framework.*

A durative planning operator o = (name(o), dur(o), preg(o), preg(0), pre, (o), effs (o),
effgr (0), eff;; (0), effg (0)) is specified such that name(o) =op_id(xs, ...,x,) (op_id is a unique oper-
ator name, and X, ..., X, are variable symbols (arguments) appearing in the operator); dur(o)
represents the duration of o's application; preg(o), preg(o), pre, (o) are sets of predicates represent-
ing “at start,” “at end,” and “over all” conditions, respectively; and eff (0), eff;r (0), eff; (0), eff,;r (0)
are sets of predicates representing “at start” negative and positive effects and “at end” negative
and positive effects, respectively. Durative actions are fully grounded instances of durative plan-
ning operators. A durative action a is applicable in a state s and time ¢ if and only if preg(a) € s
int, preg(a) € sint + dur(a), and pre,(a) € sin [t,¢t + dur(a)]. The result of the application
(or execution) of a in s and ¢ (if possible) is such that eff; (a) becomes false in s and ¢, effgr (a)
becomes true in s and ¢, eff; (a) becomes false in s and ¢ + dur(a), and effgr (a) becomes true in s
and ¢t + dur(a).

Solution plan is a list of pairs (action,time) such that each (durative) action is applicable in a
current state (starting in the initial state) at time and the result of application of all the actions is
a state satisfying the goal.

An example of a temporal operator from the Driver-Log domain is provided in Figure 1.
The operator (LOAD-TRUCK) represents loading of an object ?obj into a truck ?truck at a
location ?loc.

4 | PROBLEM CHARACTERIZATION

Each planner's performance is predicted by using planning features, which are extracted from the
domain and problem specifications. In a nutshell, a feature is a numerical value (either integer
or real) that summarizes a specific property of a considered specification. A vector of planning
features, which provides a succinct yet informative description of a problem instance, is provided
to a predictive model. The predictive model, which is learned accordingly to the observed perfor-
mance of the given planner on a training set of problem instances, maintains information about
what features are beneficial or detrimental for the given planner and, thus, is able to predict its
runtime on a previously unseen problem instance.

(:durative—action LOAD-TRUCK
:parameters (?o0bj - obj ?truck - truck ?loc - location)
:duration (= ?duration 2)
:condition (and
(over all (at ?truck ?loc))
(at start (at 2obj ?loc))
)
ceffect (and
(at start (not (at ?obj ?loc)))
(at end (in ?0obj ?truck))

)

FIGURE1 An example of a durative operator encoded in Planning Domain Definition Language 2.1

6_|_WI L Eyﬂ g:mmm“l CENAMOR ET AL

In this work, we build on existing features introduced for classical planning, and we intro-
duce 71 new features that are specific for temporal planning problems. In total, 139 features are
extracted for each problem. The following types of features are extracted:

« PDDL features that are extracted directly from a PDDL domain and problem specification;

+ SAS+ features® that are extracted from a SAS+ translation of a PDDL domain and problem
specification provided by Fast Downward and its temporal version, ie, Temporal Fast Down-
ward (TFD)%;

o SAT features that are extracted by ITSAT,*”” which translates a PDDL domain and problem
specification into a single SAT formula.

Other approaches such as Torchlight® could be a valuable source of features. However, they
do not support models that include temporal reasoning and cannot be exploited in this work.

The considered types of features divided into propositional and temporal are described in detail
in the following subsections.

4.1 | Propositional PDDL

We consider eight features, listed in Table 1, that are extracted by considering both domain and
problem specifications in PDDL. They are a subset of features proposed by Roberts et al,’® namely,
number of PDDL requirements, number of types, objects, predicates, facts in the initial state, num-
ber of (nondurative) actions, and axioms. Such features can be extracted from classical planning
problems and, thus, are not temporal specific.

4.2 | Temporal PDDL

This class of features, listed in Table 2, considers PDDL elements that appear in temporal mod-
els only. For instance, we consider the presence of numeric fluents representing the duration of
actions; the minimum, maximum, and average and the standard deviation of arity of these flu-
ents; and the number of conditions and effects that should be fulfilled at the start of, in the end of,
or during action execution (at_start, at_end, and over all). By considering the temporal
aspects of PDDL models, it can be derived, for example, if some actions have to be run in par-
allel (one action achieves an effect at the start of its execution and removes it after its execution
finishes while another action requires that “effect” during its execution). In total, we consider 31
features in this class.

TABLE 1 Propositional Planning Domain Definition Language (PDDL) features

Name Type Description

Requirements Integer Number of PDDL features that are included in the
domain definition

Types Integer Number of types in the domain definition

Objects Integer Number of declared objects in the problem definition

Predicates Integer Number of predicates in the domain definition

Facts Integer Number of predicates included in the initial state

of the problem definition

Nondurative Actions Integer Number of nondurative actions included in the
domain definition

Axioms Integer Number of axioms included in the domain definition

CENAMOR ET AL. WIL Eym %::F‘mﬁlm#

TABLE 2 Temporal Planning Domain Definition Language features

Name Type Description

Assignment Integer Number of numeric assignments in the problem

Num durative actions Integer Number of durative actions included in the domain definition
numeric duration Integer Number of durative actions with numeric duration

function duration Integer Number of durative actions with a numeric fluent representing

the duration
Avg numeric duration Double Average, minimum, and maximum duration of durative actions
with numeric duration

Functions Double Number of numeric fluents included in the domain definition

Avg arity Double Average, minimum, and maximum of the arity of numeric
fluents included in the domain

At start condition Double Average, minimum, maximum, and standard deviation of
“at start” conditions

Over_all condition Double Average, minimum, maximum, and standard deviation of
“over all” conditions

At _end condition Double Average, minimum, maximum, and standard deviation of
“at end” conditions

At_start effect Double Average, minimum, maximum, and standard deviation of
“at start” effects

At _end effect Double Average, minimum, maximum, and standard deviation of

“at end” effects

Considering the example operator provided in Figure 1, it can be seen, for example, that it has
one at_start effect and one over all condition.

4.3 | General SAS+

Many state-of-the-art domain-independent planners exploit SAS+ representation,* which can
be obtained from PDDL models by the Fast Downward framework."* Hence, we considered fea-
tures that can be derived from SAS+ encoding, which, contrary to predicate-centric PDDL, is
object centric.

The object-centric property of SAS+ encoding can be exploited to derive a CG and a DTG.
The CG encodes information about dependencies between values of state variables, whereas
the DTG—generated for each variable—encodes how actions can affect the value of the specific
variable.

In total, 49 features belong to this class. The nontemporal SAS+ features have already been
investigated by Cenamor et al'>'* and are considered by IBaCoP2.'"-* Fawcett et al* also considered
a subset of these features in their investigation.

Table 3 shows the list of features extracted from the CG of a problem instance. Table 4 provides
the list of the features extracted from the DTGs.

4.4 | Temporal SAS+

The SAS+ formalism, originally designed for encoding classical planning problems, has been
recently extended for temporal problems.*® The main difference is in DTGs—called temporal
DTGs—that store information about temporal conditions and effects. As previously introduced, in
temporal planning problems, conditions can be required to be satisfied at_start, overall, or at_end
of action execution. In total, 30 features are extracted from the temporal SAS+ encoding obtained

8_|_WI L EY“ %::ﬁl'mﬁ'“! CENAMOR ET AL

TABLE 3 General SAS+ features extracted by considering the causal graph (CG)

Name Type Description

Num VariablesCG Integer Number of variables in the CG

high Level VariablesCG Integer Number of variables that have at least one goal

total EdgesCG Integer Number of edges that connect the nodes in the CG

total WeightCG Integer Sum of the weight of the edges in the CG

veRatio Double Ratio between variables and edges in the CG

weRatio Double Ratio between weight and edges in the CG

wvRatio Double Ratio between weight and variables in the CG

hvRatio Double Ratio between high-level variables and the other variables

input Edge Double Maximum, average, and standard deviation of the input
edges at the CG

output Edge Double Maximum, average, and standard deviation of the output
edges at the CG

input Weight Double Maximum, average, and standard deviation of the weight of the
input edges at the CG

output Weight Double Maximum, average, and standard deviation of the weight of the
output edges at the CG

input EdgeHV Double Maximum, average, and standard deviation of the input
edges at the high level

output EdgeHV Double Maximum, average, and standard deviation of the output
edges at the high level

input WeightHV Double Maximum, average, and standard deviation of the weight of the
input edges at the high level

output WeightHV Double Maximum, average, and standard deviation of the weight of the

output edges at the high level

by TFD.*® The features are listed in Tables 5 and 6. Several features are “auxiliar” variables, which
TFD needs for preprocessing purposes: it uses multivalued state variables and handles logical
dependencies and arithmetic subterms via axioms.

4.5 | SAT size

This class of features contains information about the size of a problem encoded in SAT. The only
SAT-based solver that is able to handle temporal planning problems is ITSAT.*” However, for the
sake of runtime optimization, ITSAT,*”” which is, so far, the only SAT-based solver handling tem-
poral planning problems, generates a file that includes considered SAT variables and some basic
relations between them. By using techniques from SATzilla,” we can extract from that file infor-
mation about the problem size in SAT. In total, 13 features are considered in this class. Details are
given in Table 7.

4.6 | Feature extraction

Feature extraction cutoff time was set to 100 seconds, and the RAM has been set to 4 GB. Using
too much central processing unit (CPU) time for extracting features reduces their usefulness. In
the light of the fact that planners tend to solve problems quickly or not at all,* it might be better
to select a not-so-good planner than spending too much time to extract all features (and select a
better planner).

CENAMOR ET AL.

Wi LEYﬂ mm"u—g

TABLE 4 General SAS+ features derived from domain transition graphs (DTGs)

Number of edges of all DTGs

Total weight of the edges of all DTGs
Ratio between edges and variables
Ratio between weight and edges

Ratio between weight and variables
Maximum, average, and standard deviation of the input edges of

Maximum, average, and standard deviation of the output edges of

Maximum, average, and standard deviation of the weight of the input
edges of the DTG

Name Type Description
total Edges Double
total Weight Double
edVa Ratio DTG Double
weEd Ratio DTG Double
weVa Ratio DTG Double
input Edge DTG Double
the DTG
output Edge Double
the DTG
input Weight Double
output Weight Double

Maximum, average, and standard deviation of the weight of the output
edges of the DTG

TABLE 5 Temporal SAS+ features—part I

Name Type Description

Durative actions Numeric =~ Number of durative actions identified
by TFD

Action counter Numeric Number of different actions from the
SAS+ translation

Function symbols Numeric Number of symbols identified by TFD

Generated rules Numeric Number of rules generated by TFD in the
translation process

Final queue Numeric Number of the elements that appear in the
planning queue

Translator variables Numeric =~ Number of temporal variables identified by TFD

Translator derived variables Numeric Number of temporal derived variables identified
by TFD

Translator facts Numeric =~ Number of temporal facts identified by TFD

Mutex key Numeric =~ Number of mutexes

Strips to sas Numeric Number of auxiliary variables used in a temporal
SAS+ encoding

Ranges Numeric Number of different numeric variables with
different ranges

Goal list Numeric Number of elements in the goal state of the
temporal task

Task init Numeric Number of elements in the initial state of the
temporal task

Translator durative act Numeric Number of actions in the preprocess phase

Translator axiom Numeric Number of axioms in the translation phase

Translator num axioms Numeric Number of simplified axioms in the translation
phase

Translator num axioms by layer Numeric Number of actions per level

Translator max num layer Numeric Maximum number of layers

Abbreviation: TFD, Temporal Fast Downward.

10_|_W Computational CENAMOR ET AL.
lLEYﬂ s
Inte

TABLE 6 Temporal SAS+ features—part II

Name Type Description

Translator num axiom map Numeric Number of axioms that appear throughout the process

Translator const num axioms Numeric Minimum number of necessary axioms

Translator reachable Numeric ~ Number of variables that are reachable in the
initial state

Translator mutex group Numeric Number of mutex groups

Translation key Numeric Auxiliary value of TFD

Avg level Numeric Average number of levels

std level Numeric Standard deviation of the number of levels

Global num type start Numeric ~ Number of transitions that are labeled at at_start

Global num type end Numeric Number of transitions that are labeled at at_end

Global min level Numeric ~ Minimum number of levels in DTGs

Global max level Numeric ~ Maximum number of levels in DTGs

Global total level Numeric Total number of levels in DTGs

Init Integer Number of predicates that appear in the initial state

Goals Integer Number of predicates that appear in the goal

Function administrator Integer Auxiliary number of functions in TFD

Final gqueue length Integer Size of the queue in the translation process

Translator operators Integer Number of operators that appear in the translation
process

Necessary operators Integer Number of operators at the preprocessing phase

Uncovered facts Integer Number of facts included in the preprocessing
phase

Necessary variables Integer Number of variables that appear in the translation
process

Relation axioms Integer Number of axioms that are relational in TFD

Functional axioms Integer Number of axioms that are functional in TFD

True axioms Integer Number of axioms that are true in the translation
process

Abbreviations: DTGs, domain transition graphs; TFD, Temporal Fast Downward.

Table 8 shows the average and maximum time required for extracting the different sets of fea-
tures as well as the percentage of problems in which the extraction was successfully completed (ie,
within the time and memory bounds). Whereas propositional PDDL feature extraction requires
negligible time, temporal PDDL feature extraction requires around 10 seconds. On the other hand,
extracting SAS+ features is usually more expensive in tens of seconds. SAT size feature extraction,
on the other hand, takes about 1-2 seconds. SAS+ features as well as SAT size features have not
been computed, due to timeout or running out of memory, in approximately 20% of the problems
considered in our experimental analysis.

5 | EXPERIMENTAL SETTINGS

Our experimental analysis aims at assessing how classification and regression approaches can
cope with the problem of algorithm selection for temporal planning problems.

« Classification approaches classify planning problems into a single category, according to the
fact whether the planner will solve the problem or not.
+ Regression techniques model each planner's runtime.

CENAMOR ET AL. WIL EYﬂ g:ﬁl'mﬁ'mJ_n

TABLE 7 SAT size features extracted by considering the SAT-based encoding exploited by ITSAT

Name Type Description

Ratio relevant actions Double Ratio between the number of final and initial actions
Num action Integer ~ Number of final actions

Num propositions Integer Number of all propositions

Num relevant actions Integer ~ Number of the final instantiated actions

Num relevant propositions Integer Number of propositions that are included in the
relevant actions

Variables end Integer Created variables in the SAT formulation

Propositions end Double Number of propositions that are included in the
instantiated actions

Actions end Integer Instantiated actions in the SAT formulation after
simplification

Total Mutex clauses Double Number of mutex clauses

Ratio end Integer Ratio of the number of variables to the number of clauses

Event clauses Double Number of clauses in the original formula

TClauses Integer ~ Number of simplification clauses

Number Files Integer Number of temporal files needed by ITSAT

Abbreviation: SAT, Satisfiability.

TABLE 8 Average and maximum central processing unit time needed
to extract features, the number of features per group (No.), and the
percentage of successful feature extraction (Succ)

Average Maximum No. Succ %
PDDL Prop 0.01 0.15 8 100
Temp 5.06 10.00 28 100
SAT size 0.89 2.00 13 80
SAS+ 28.89 50.00 90 80
Total 33.96 60.15 139 =

Abbreviations: PDDL, Planning Domain Definition Language; SAT, Satisfiability.

When dealing with EPMs, a number of decisions have to be taken. First, it is pivotal to select
a number of suitable planners; such planners will be used for evaluating the predicting capa-
bilities of classification and regression approaches. Second, benchmarks have to be gathered for
both training and testing purposes. Third, features should be extracted on which EPMs perform
predictions. Finally, appropriate metrics have to be considered for measuring the planners' per-
formance. In the next sections, we describe the decisions taken on the mentioned regards. The
experimental framework exploited in this analysis is shown in Figure 2. It includes the relevant
input and the two main steps, namely, training and testing.

Planners and feature extractors were run on a cluster with Intel XEON 2.93-GHz nodes with
8 GB of RAM each, using Linux Ubuntu 12.04 LTS. Planners had a cutoff time of 1800 seconds
and a maximum of 4 GB of RAM, whereas feature extractors had a cutoff time of 100 seconds and
a maximum of 4 GB of RAM.

5.1 | Planners

Planning systems that can deal with temporal problems are not as numerous as classical planning
solvers. Initially, 12 planners were considered; however, those with very poor performance on

IZ_I_W Computational CENAMOR ET AL.
ILEYﬂ s
Inte

Empirical Performance
Models Construction.

Planners

Problem
Characterization
Training | Predictive |
Benchmarks Approach
Evaluation

Best Training
Result Model

Empirical Performance

_} Models Evaluation

Problem
Characterization

Testi Algorithm
esting selection
Benchmarks —}

Evaluation

FIGURE 2 The architecture of the proposed system [Color figure can be viewed at wileyonlinelibrary.com]

training problems (in terms of coverage) were removed. Models for planners with poor coverage
on training instances result in a trivial “always negative” EPM, which does always predict that the
planner will not solve a given problem, which is usually built (and is accurate). Such an EPM just
never considers these planners in the algorithm selection process. Hence, for our experiments, we
have considered eight state-of-the-art temporal planners that accommodate various techniques,
as follows.

« LPG-td* exploits stochastic local search in the space of planning graphs and is able to generate
solutions of increasingly good quality. For the sake of this analysis, as we are interested in
runtime performance, LPG was stopped after the first solution was found, and seed was fixed.

« POPF2* is a Forward-Chaining Partial Order Planner that exploits forward-chaining search,
expanding nodes according to a partial order rather than the conventional total order.

+ Yahsp2 and Yahsp2-MT* compute look-ahead plans from delete-relaxed plans and use them
in the state-space heuristic search.

« TFD* is based on the Fast Downward planning system and uses an adaptation of the
context-enhanced additive heuristic to guide the search in the temporal state space induced by
the given planning problem.

« ITSATY translates the problem into a sequence of SAT instances, corresponding to different
time horizons considered for solving the problem instance.

» Yahsp3 and Yahsp3-MT* are the latest versions of the Yahsp planner, which took part in
IPC 2014.

Two different versions (four planning engines) of Yahsp have been included, because it per-
formed well in both IPC 2011 and IPC 2014 (Yashp 3-MT won the temporal track of IPC 2014).
Due to the fact that an EPM is built for each planner, in order to predict its performance,
we do not expect the selection of four different engines based on the same planner having an
impact on the experimental evaluation. Instead, it may shed some light on the progress of the
field.

http://wileyonlinelibrary.com

CENAMOR ET AL. WIL Eyﬂ gt..ﬁl'mﬁ'mJ_B

TABLE 9 Training domains categorized according
to the planning competition in which they were used

Training Domains
IPC 2008 IPC 2011
Crewplanning Crewplanning
Elevators-N Elevators
Elevators Floortile
Modeltrain MatchCellar
Openstacks-adl Openstacks
Openstacks-N Parcprinter
Openstacks-N ADL Parking
Openstacks
Parcprinter Pegsol
Pegsol Sokoban
Sokoban Storage
Transport Temporal Machine Shop
Woodworking Turn and Open

Abbreviation: IPC, International Planning Competition.

5.2 | Benchmarking

We considered temporal planning problems gathered from the temporal tracks of the last editions
of the IPC," namely, 2002, 2004, 2006, 2008, 2011, and 2014. Problems not solved by at least one
planner were not included in the training set. EPMs have been trained on benchmarks from IPCs
2008 and 2011: in total, 25 domain models and 630 problems have been considered, as seen in
Table 9. In IPC 2008, there are two domains having Architecture Description Language (ADL) fea-
tures (in blue) and three domains with numeric fluents (in green). IPC 2011 does not include any
domain with numeric fluents or ADL features.
For testing purposes, we designed three different testing sets that are described in Table 10.

« The IPC 2014 testing set, which includes all the benchmarks from the temporal track of IPC
2014.

« The Known testing set, which considers domains that are also included in the training set.
Testing problem instances are different from training ones.

« The Unknown testing set, which includes domains that are not present in the training set.

The IPC 2014 set aims at providing a general overview of the performance of the trained mod-
els. The other two testing sets have been designed for evaluating the generalization ability of
trained models on either completely new domain models (Unknown) or new problem instances
from already seen domain models (Known).

Whenever possible, we considered different encodings of the same domain. Specifically, we
considered domain models encoded using Standford Research Institute Problem Solver (STRIPS)
features only, including numerical constraints, and exploiting ADL features.

http://icaps-conference.org/index.php/main/competitions

1w LEY“ mmﬂ‘

CENAMOR ET AL.

TABLE 10 The considered domains divided into the Unknown, Known, and International Planning

Competition (IPC) 2014 sets. Planning Domain Definition Language requirements per each considered domain

IPC 2014 Unknown Known ADL Numeric Durative

No.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
Total

IPC

2002

2004

2006

2014

Domain

Depots-simple-T
Depots-T
DriverLog-time

DriverLog-simpleTime
ZenoTravel-simpleTime

ZenoTravel-time
satellite
Rovers-mt
Rovers-time
UMLS-flaw
UMLS-fluents
Airport-adl
Airport-str
Pipesworld-mt
Pipesworld-mtc
Satellite-adl
NOTANKAGE
TANKAGE
Temporal Machine
Shop (TMS)
Openstacks-strips
Openstacks-time
Openstacks-mt
Openstacks
Storage-time
Storage
Trucks-adl
Trucks-time
Rovers
PipesWorld
DriverLog
Floortile
Map-Analyzer
MatchCellar
Parking
RTAM
Satellite
Storage
Temporal Machine
Shop (TMS)
Turn and Open

NSNS SNSSNSASS

v
v
10 (4/6)

Abbreviation: ADL, Architecture Description Language.

SN ANASNSSANASNSNSSANSNSSANNSNSNS

AN NANR

23

AN N NN

AN

ASANENEN

AN

AN

ASANENEN

Actions

AN SSSSNS ANANA Y N NN

AN

AN

SNSSSSSSSNSAlNS

AN

Having specified the training and testing benchmarks, in this analysis, we compare the
performance of EPMs using

« astandard 10-fold cross-validation approach on a uniform random permutation of the training
instances and

« the three different testing sets: IPC 2014, Unknown, and Known.

CENAMOR ET AL. WIL EYﬂ g:ﬁl'mﬁ'mJ_ls

TABLE 11 An overview of the sets of features considered in our experimental analysis. The check mark
indicates that the group of features (column) includes the corresponding set (row). The Sel set does not include
all the features of involved groups

Group PDDL SAS+ Temporal (T) Classical(nT) Selection (Sel) All
Propositional PDDL v 4 4 8

Temporal PDDL v v v 28
General SAS+ v v v 49
Temporal SAS+ 4 v 4 30
TFD v 11
SAT size v 13
Total 49 90 71 68 11 139

Abbreviations: PDDL, Planning Domain Definition Language; SAS, Satisfiability; TFD, Temporal Fast Downward.

5.3 | Groups of features

In order to evaluate how different features affect the ability to predict planners’' performance, we
consider different groups of features. Features have been grouped according to either the encod-
ing they refer to or their temporal specificity and are summarized in Table 11. All indicates the
whole set of computed features (139). PDDL refers to the 49 features, including propositional
PDDL, temporal PDDL, and problem size. SAS+ considers the 90 features that are extracted by
considering SAS+ encoding only. nT (non-Temporal) refers to the 68 features that are typical of
classical planning. Features are gathered from propositional PDDL and general SAS+ sets. The
T (Temporal) set considers the 71 features that are extracted by considering temporal PDDL and
temporal SAS+ encoding. We also consider the Sel set, which includes a small number of rele-
vant features that have been automatically selected. Feature selection was done by looking at a
J48 decision tree,* which is built for predicting the solvability of the training instances, by con-
sidering planners as input information. Given the model, we select the features used in nodes
placed in the top fifth of the decision tree. They are believed to be important since, according
to the J48 algorithm, they provide the best information gain.** This can be seen as a supervised
method for feature selection. Considering top nodes avoids potential overfitting, as it may arise
in lower-level leaves of the tree that are used for classifying a very few instances. The accuracy of
the EPM generated by the J48 algorithm is good, approximately 91%. Therefore, we believe that
information extracted from such a model is relevant. The resulting automatically generated set
of features, Sel, includes 11 features: one from the propositional PDDL set, seven from temporal
PDDL, two from general SAS+, and one from temporal SAS+. In particular, the selected features
are as follows: the number of predicates included in the domain definition (propositional PDDL);
the number of durative actions, the number of actions that use numeric fluents for representing
their duration, the average arity of these fluents, the minimum number of conditions that have to
holdat start ofaction execution, the maximum number of conditions that have to hold during
action execution (over all), and the minimum and maximum numbers of effects that become
true after action execution finishes (at _end) (temporal PDDL); the maximum number of outgo-
ing edges of the CG, the maximum number of incoming edges in the DTG (general SAS+); and
the number of translated durative actions (temporal SAS+). The selection process emphasizes the
importance of temporal features (8 out of 11 features are taken from temporal sets); they tend to
appear earlier in the J48 decision tree and are thus deemed as being more informative. On the
other hand, this distribution of selected features across SAS+ and PDDL sets requires extracting
both PDDL and SAS+ sets of features (the latter is more computationally expensive).

6 | Computational CENAMOR ET AL.
WlLEYﬂ oy
6 | EXPERIMENTAL RESULTS

First, we assessed the performance of various classification and regression models (45 different
algorithms in total), using the WEKA tool.** We considered linear regression, neural networks,
Gaussian processes, decision trees, regression methods, clustering, support vector machine, and
rule-based techniques.

6.1 | Classification

For exploiting a classification approach, a different predictive model is built per planner. Such a
predictive model has to classify the problem instance according to the fact whether the planner
will find its solution or not. Rotation Forest* performed best among the considered classification
approaches on the training instances and is exploited hereinafter. Results are presented in terms of
accuracy: it is the number of correct predictions made divided by the total number of predictions
made, multiplied by 100 to obtain percentage.

Table 12 shows the results of the trained predictive models on training instances. As expected,
the performance on training instances is good, regardless of the considered set of features. Usually,
any set of features achieves an accuracy level of approximately 90%. We conjecture that each class
includes at least a few informative features and that some of the included domains have a large
number of corresponding problem instances. A larger number of problem instances can positively
influence the performance of predictive models because, on a limited and generally coherent set
of instances from the same domain, a given planner tends to perform uniformly. It is therefore
easier, under such circumstances, for a predictive model to predict the planner's behavior.

The two considered classes (solved and unsolved) have been balanced among all the plan-
ners on the training instances; the maximum difference is 40%-60%. In order to achieve this class
balance, we assessed the initial distribution between classes and, in imbalanced cases, randomly
oversampled the minority class. This approach is common practice in machine learning.*’” The
exploitation of training sets with very imbalanced classes will lead to the generation of trivial
EPMs that classify all the instances as members of the most represented class.

TABLE 12 Accuracy (higher is better) of the classification empirical
performance models predicting whether a planner will solve a problem or not
on the training instances. Bold indicates the best results (also considering

hidden decimals)
Training Instances
Planner All PDDL SAS+ nT T Sel
LPG 92.6 88.5 88.6 92.7 91.9 88.4
POPF2 88.6 87.2 84.9 88.7 88.2 87.7
Yahsp2 89.6 91.0 89.1 87.9 89.9 91.4
Yahsp2-MT 95.5 91.9 89.3 93.9 95.3 89.8
ITSAT 94.1 88.2 88.4 93.6 94.1 89.1
TFD 94.1 87.5 84.9 93.5 94.2 88.8
Yahsp3 91.0 90.8 89.0 89.7 91.2 93.1
Yahsp3-MT 93.9 934 90.7 92.2 93.8 90.7

Abbreviations: PDDL, Planning Domain Definition Language; POPF2, Forward-Chaining
Partial Order Planner; SAS, Satisfiability; TFD, Temporal Fast Downward.

CENAMOR ET AL. WIL EY“ %::F'mﬁlmJ_u

TABLE 13 Accuracy (higher is better) of the classification empirical
performance models predicting whether a planner will solve a problem or not
on the testing instances. Bold indicates the best results (also considering hidden

decimals)
IPC 2014
Planner All PDDL SAS+ nT T Sel
LPG 76.5 81.5 73.0 75.0 74.5 76.0
POPF2 87.0 77.5 83.5 86.5 80.5 68.5
Yahsp2 74.5 76.0 67.5 57.0 59.5 56.5
Yahsp2-MT 63.5 80.5 65.0 72.5 57.0 68.0
ITSAT 89.0 88.5 73.0 84.5 88.5 74.5
TFD 67.0 67.0 69.5 71.0 67.0 67.0
Yahsp3 60.0 74.0 61.5 59.0 57.0 56.0
Yahsp3-MT 75.0 82.0 73.0 65.5 57.0 78.0
Known
All PDDL SAS+ nT T Sel
LPG 42.5 81.2 333 31.2 76.3 53.8
POPF2 65.6 72.0 67.20 45.7 77.4 51.6
Yahsp2 43.6 75.8 74.19 76.9 78.0 78.0
Yahsp2-MT 80.1 57.5 76.9 76.3 79.0 79.0
ITSAT 97.3 100 76.3 86.0 98.4 92.5
TFD 42.5 39.3 71.5 75.3 44.6 41.4
Yahsp3 71.5 77.4 65.1 74.7 57.5 77.4
Yahsp3-MT 53.2 78.5 76.9 75.8 78.5 78.5
Unknown
All PDDL SAS+ nT T Sel
LPG 62.6 48.9 64.4 55.4 55.7 56.8
POPF2 59.8 57.0 67.3 77.1 42.1 57.1
Yahsp2 48.9 80.3 84.7 84.5 73.2 75.7
Yahsp2-MT 75.0 71.4 79.4 82.2 74.7 72.0
ITSAT 92.4 86.2 90.0 75.0 89.3 924
TFD 57.6 53.7 70.8 68.0 40.8 30.6
Yahsp3 62.2 73.7 78.2 71.9 78.2 55.7
Yahsp3-MT 86.4 65.0 78.3 72.7 73.6 57.1

Abbreviations: IPC, International Planning Competition; PDDL, Planning Domain
Definition Language; POPF2, Forward-Chaining Partial Order Planner; SAS, Satisfiability;
TFD, Temporal Fast Downward.

Summarizing, the results in Table 12 clearly indicate that on training instances, the EPMs are
able to identify relevant features and combine them for predicting solvability of problems.

Table 13 shows the performance of classification EPMs on the considered testing sets. The
analysis of the results on the IPC 2014 set provides a number of interesting insights: (i) the PDDL
set leads, in five out of eight cases, to the best prediction results; (ii) using either a temporal
or a nontemporal set of features achieves similar prediction results; (iii) using all the features
together, on the other hand, does not guarantee the best performance; (iv) TFD and Yahsp3
behaviors are hard to predict on testing instances; and (v) the set of selected features usually
achieves good prediction results, particularly considering that only 11 features are considered

1B | Computational CENAMOR ET AL.
WI LEYﬂ oy

for a domain-independent prediction. We observed that TFD and Yahsp2/3 show a very different
behavior on training and testing problems, possibly because of new domains and/or significantly
larger instances used in the testing set. TFD translates the PDDL planning problem into SAS+
and then solves the SAS+ problem; the translation phase can be slow and, sometimes, requires
a huge amount of memory. On large instances, as those used in the IPC 2014 set, it happens
that the translation step fails due to lack of available memory (4 GB); this is clearly hard to pre-
dict for an EPM that has been trained on smaller instances, where this issue does rarely arise.
Both planners have issues in dealing with problems that need to reason with concurrency in
order to be solved. In fact, on the benchmarks of IPC 2014, TFD is not able to solve problems
from five domains, whereas Yahsp3 is not able to provide any solution for instances from three
domains.

Considering all the features at the same time is not always the best option. We believe this is
mainly because of introduced “noise.” Our hypothesis is supported by the results achieved using
the 11 selected features: they represent a (hopefully) noise-free set of features, and their exploita-
tion achieves results close to those achieved when using the All set. The considered sets have
some overlap, and this partially explains why, in some cases, they show similar performance.

Table 13 also shows the results achieved by trained EPMs on the Known and Unknown test
sets. We observed that on the Known set, performance is usually less accurate than those achieved
on the IPC 2014 testing set. We believe this is due to the fact that the domain models are encoded
using different sets of PDDL features. In many cases, features introduced in domains that are
included in the testing set are not supported by planners. Therefore, predictions are less accurate
because, although many features have values that are similar to some instances included in the
training set, the final outcome is completely different. This is also reflected in the very different
performance of the considered sets of features. The Known set is significantly smaller than the
other sets: from this perspective, mistakes have a much larger impact on the overall evaluation.

ITSAT is the only planner that has very predictable performance on the Known testing set.
On the contrary, LPG has quite unpredictable performance on the Known set: for instance, the
use of SAS+ and nT feature sets leads to around 30% accuracy. This may be due to the intrinsic
randomness of the planning approach exploited by LPG: it is based on stochastic local search. On
the other hand, EPMs generated for predicting the performance of Yahsp2, Yahsp3, and TFD tend
to have similar accuracy on all the considered testing sets.

To investigate how the importance of the features varies between training and testing prob-
lems, we applied our selection process on the EPMs built by considering only testing instances.
Similarly to the selection process done on training problems, 11 features are selected. One of them
is exactly the same: the minimum number of effects that become true when action execution fin-
ishes (at_end) (PDDL). The other six features selected according to the testing instances are
strongly related to those extracted on training problems, as they consider similar aspects of the
problem, but from a slightly different perspective: maximum arity of numeric fluents (PDDL),
minimum number of at_start conditions (PDDL), minimum duration of an action (PDDL),
standard deviation of incoming edges of the DTG (SAS+), number of variables (SAS+), and num-
ber of relevant actions (SAS+). Finally, the remaining features are completely different from those
included for the EPMs built considering training instances. This is the case of the following fea-
tures: number of PDDL requirements (PDDL), number of facts in the initial state (PDDL), ratio
between the weight and the edges in the CG (SAS+), and ratio between edges and variables of the
DTG (SAS+).

Overall, considering also the results achieved by the EPMs exploiting the Sel set of features,
this analysis confirms their informativeness. It also indicates that the technique we designed

CENAMOR ET AL. WIL EYﬂ g:ﬁl'mﬁ'mJ_lg

for selecting informative features is reasonably accurate, in the sense that it selects features that
generalize on different benchmarks.

6.2 | Regression

Regression EPMs predict the runtime a planner needs to solve a given problem instance. The
runtimes of considered planners on selected benchmarks vary between 0 and 1800 CPU seconds.
Given the large variations in CPU times, we trained our regression models to predict the log run-
time rather than absolute time: this has been demonstrated effective in similar circumstances.® To
predict when a planner will not be able to solve a given problem instance, we assigned a default
value of 2000 CPU-time seconds to unsolved instances. In this way, any predicted value between
1800 and 2000 CPU-time seconds will be considered as that the EPM identified that the given
instance will not be solved.

Performance is measured in terms of the root-mean-square error (RMSE). Experimentally, we
observed that the decision tables algorithm*® generates, on average, the most accurate predictive
models, and we will exploit this approach for the remainder of this experimental analysis.

Table 14 shows the results, in terms of RMSE, of the best regression models with 10-fold cross
validation on a uniform random permutation of the 630 training instances. First, we noticed that
predicting algorithm runtime is challenging, according to the RMSE values. On the other hand,
it is well known that RMSE is sensitive to occasional large errors (eg, predicting an instance as
unsolvable although it can be solved quickly); thus, actual predictions can be better, on average.

Table 15 shows the RMSE results achieved by the regression predictive models on the three
considered testing sets. Differently from the results of classification EPMs, regression models are
providing the most accurate predictions on the Known test set. On the other test sets, regression
models tend to perform similarly. However, as for the classification models, ITSAT's performance
is the easiest to predict. On the Known testing set, the RMSE goes below 1 because ITSAT does
not solve the vast majority of the problems, and therefore, the EPM tends to predict very poor
performance.

We noticed that the regression approach shows similar RMSE performance for the TFD plan-
ner on training and testing instances. This was not the case for the classification model. On the

TABLE 14 Root-mean-square error (lower is better) of the regression
empirical performance models built by using decision tables on training
instances. Bold indicates the best performance (also considering hidden

decimals)
Training Instances
Planner All PDDL SAS+ nT T Sel
LPG 1.49 1.57 1.84 1.54 1.48 1.49
POPF2 2.12 2.27 2.53 2.23 2.11 2.05
Yahsp2 1.76 1.45 2.07 1.86 1.65 1.27
Yahsp2-MT 1.41 1.45 2.25 1.84 1.33 1.30
ITSAT 1.45 1.58 1.68 1.41 1.42 1.38
TFD 2.18 2.32 2.56 2.19 2.16 2.02
Yahsp3 1.61 1.60 2.04 1.81 143 1.41
Yahsp3-MT 1.42 1.28 1.29 1.55 1.21 1.17

Abbreviations: PDDL, Planning Domain Definition Language; POPF2, Forward-Chaining
Partial Order Planner; SAS, Satisfiability; TFD, Temporal Fast Downward.

20_|_W Computational CENAMOR ET AL.
lLEYﬂ s
Inte

TABLE 15 Root-mean-square error (lower is better) of regression empirical
performance models built by using decision tables on testing instances. Bold
indicates the best performance (also considering hidden decimals)

IPC 2014
Planner All PDDL SAS+ nT T Sel
LPG 3.29 3.56 2.61 2.60 3.44 2.20
POPF2 2.49 2.43 2.22 2.84 2.48 2.76
Yahsp2 2.76 2.55 3.22 2.76 2.37 3.63
Yahsp2-MT 2.83 3.05 3.36 3.08 2.89 2.86
ITSAT 2.06 2.28 2.54 2.42 2.36 1.87
TFD 2.51 2.73 2.87 2.80 2.83 2.19
Yahsp3 2.60 3.33 3.23 2.85 2.79 2.20
Yahsp3-MT 2.99 2.85 3.12 3.27 2.65 2.64
Known
All PDDL SAS+ nT T Sel
LPG 3.02 3.02 3.54 3.53 3.02 3.02
POPF2 2.86 2.46 2.53 2.67 2.43 2.46
Yahsp2 1.73 1.57 2.03 2.06 1.57 1.62
Yahsp2-MT 3.18 3.16 2.12 2.13 3.16 1.54
ITSAT 1.61 1.61 0.87 0.99 2.15 2.29
TFD 3.47 3.47 2.98 2.94 3.45 3.09
Yahsp3 1.46 1.51 2.12 2.12 1.47 1.57
Yahsp3-MT 2.42 1.99 1.95 1.97 1.68 1.49
Unknown
All PDDL SAS+ nT T Sel
LPG 2.86 2.86 2.13 2.86 2.86 2.31
POPF2 2.26 2.35 2.15 2.06 2.35 2.36
Yahsp2 2.18 2.15 2.39 2.37 2.15 2.15
Yahsp2-MT 2.80 2.78 2.40 2.35 2.78 2.02
ITSAT 2.70 2.70 2.45 2.56 2.84 2.85
TFD 3.86 3.86 2.81 2.78 3.86 2.80
Yahsp3 2.15 2.15 2.46 2.44 2.12 2.32
Yahsp3-MT 2.13 2.03 2.16 2.20 2.02 1.88

Abbreviations: IPC, International Planning Competition; PDDL, Planning Domain
Definition Language; POPF2, Forward-Chaining Partial Order Planner; SAS, Satisfiability;
TFD, Temporal Fast Downward.

other hand, we observed that Yahsp-based systems show a very different behavior on the training
and testing instances as in the classification case. In particular, the behavior of the MT versions
is the most challenging to predict. Since Yahsp-MT exploits a multithreaded approach, it is possi-
bly more sensitive to small changes of the execution environment (eg, operative system calls and
input/output delays). This has a limited impact on the ability of the planner in solving instances
but makes the actual runtime harder to predict. A similar explanation can be provided for the
high error in the LPG predictions: LPG exploits a randomized search algorithm that, in the pres-
ence of domain models that are similar to those used in training instances, leads the predictive
model to make inaccurate estimations.

With regard to the different classes of features, using the Sel set often results in the best regres-
sion EPMs since, very likely, this set is noise free and very informative. We also observed that the

CENAMOR ET AL. WIL EYﬂ g:ﬁl'mﬁ'mJ_n

features from the temporal set are very informative and achieve prediction performance that is
usually very close to the best.

6.3 | Exploiting EPMs for algorithm selection

After evaluating the prediction performance of the classification and regression EPMs, we are in
a position to exploit them for performing online algorithm selection. In particular, we tested the
capability of EPMs as mechanisms for selecting the most promising planner to exploit on a given
(and previously unseen) testing instance. A single planner is selected for solving each planning
instance, and a cutoff time of 1800 seconds is allocated to the selected planner.

Classification EPMs are able to predict whether a given planner will solve a given problem
instance or not. Therefore, they can be used to select planners in order to maximize coverage, ie,
the number of solved instances. As a different classification EPM is generated for each planning
engine, the selection is performed as follows. Among all the planners that are predicted to solve
a given problem, the selected planner corresponds to the EPM that showed the best accuracy on
training instances.

Regression EPMs predict, for each planner, the runtime needed to solve a given planning
instance. The planner selected is the one predicted to be the fastest.

‘We compare the approaches by considering the IPC runtime score and the coverage. The IPC
score is defined as in the Agile track of IPC 2014. For a planner C and a problem p, Score(C, p) is
0 if p is unsolved, and 1/(1 + log,,(T(C)/ T7)). where T,(C) is the CPU time needed by planner
C to solve problem p and T} is the CPU time needed by the best considered planner, otherwise.
The IPC score on a set of problems is given by the sum of the scores achieved on each considered
problem.

In terms of basic planners' performance on the IPC 2014 testing set, Figure 3 shows the corre-
sponding number of solved problems, with regard to CPU time. Most of the planners are usually
either solving instances quickly or not at all. Exceptions are ITSAT and TFD, which are able to
solve a few instances in about 600 seconds and a few more instances in about 1400 seconds.

Table 16 shows the results in terms of the number of solved problems and IPC runtime score
achieved on the IPC 2014 test set by the classification and regression EPMs using different sets
of features. In this analysis, we ignore the CPU time needed for extracting features, as the main
goal of this section is to evaluate the ability of the generated EPMs to effectively select a suitable
planner for a given problem.

We focus on four groups of features: All, Sel, Temporal, and non-Temporal. For algorithm
selection, we are particularly interested in assessing the usefulness of temporal-specific features
and in evaluating the effectiveness of the small set of selected features.

For the sake of comparison, Table 16 includes the performance of the virtual best solver (VBS),
which represents an Oracle that selects always the best possible planner for solving the specific
problem, the two best basic solvers accordingly to (C)overage (LPG) and IPC (S)core (Yahsp2),
and a static portfolio (B4P), which includes the best four planners according to coverage perfor-
mance on testing instances: LPG, Yashp2, Yashp3, and TFD. The solvers are ordered according
to their coverage (descending order), and each planner runs for one-fourth of the cutoff time
(ie, 450 seconds per planner). Considering these additional systems—VBS, B4P, and the best basic
solvers—provides a better and more complete understanding of the performance of algorithm
selection across the EPMs.

Both classification and regression EPMs achieve better coverage results than the best basic
solver (+11% and +32.5%, respectively). The performance achieved using the regression EPMs is
very close to the performance of the VBS and better than that of the B4P.

22 W E' 3 1 CENAMOR ET AL.
2 | ILEYﬂ » Ty
Inte

120 L o . .

- B e K SR HK- - - - -SK- KK - -~ - K - - K- - %Y
100 ; _

Coverage

LPG —+—
yahsp2

yahsp3 ------

TFD 8-

yashp2-mt
yahsp3-mt

itsat -- -@- -

popf? A

1 1 1 1
600 800 1000 1200 1400 1600 1800

Time (seconds)

FIGURE 3 The number of solved instances over time of the considered planners on the benchmarks from the
International Planning Competition 2014 temporal track. TFD, Temporal Fast Downward [Color figure can be
viewed at wileyonlinelibrary.com]|

It is useful to remind that the B4P has been configured by considering the performance of
planners on testing instances, whereas both regression and classification EPMs have been trained
on a different set of instances. From this perspective, the proposed EPMs demonstrate the ability
to generalize, since they provide useful prediction for performing algorithm selection on unseen
instances, although we observed that the regression EPMs outperform the classification EPMs,
both in terms of coverage and IPC score. This is due to the fact that the classification EPMs do
not estimate the performance difference between solvers; hence, an error in the prediction might
result in selecting a planner that will not solve the problem. The regression EPMs consider plan-
ners' runtime. Therefore, a mistakenly selected planner usually needs a longer execution runtime,
whereas a planner with extremely poor performance is very rarely selected.

With regard to the considered sets of features, we noticed a very different behavior of the
classification and regression EPMs. Classification achieves the best coverage performance when
using the selected set of 11 features; the IPC score on that set is close to the best one, which is
achieved by using Temporal features. On the other hand, the Sel set is not the most informative for
algorithm selection through regression; using the whole set of features—or even the set including
only temporal/nontemporal features—achieves better performance.

In Table 16, domains are listed according to the difficulty of their instances. In this context,
the smaller is the number of planners that can solve all the problems, the more difficult is the
domain. According to this intuitive definition, the less difficult (easier) domain is Parking, since
six planners solve all the problems, and all the considered planners solve at least six instances.
The two more difficult domains are TMS (Temporal Machine Shop), because only one planner is
able to solve all its benchmark problems, and TurnAndOpen, where three planners solve about
10 problems each. We conjecture that the difficulty of domains plays a pivotal role in algorithm

http://wileyonlinelibrary.com

CENAMOR ET AL. WIL EY“ %::F'mﬁlmJ_B

TABLE 16 Coverage and total International Planning Competition (IPC) score of the regression and
classification empirical performance models exploited for algorithm selection, of the best basic solver according
to coverage (Best-C), of the best basic solver according to the IPC score (S-Best), of the virtual best solver (VBS),
and of a static portfolio including four planners (B4P). The rows in gray indicate the domains that are not
included in the training set. Bold indicates the best performance

Classification Regression Best VBS B4P
Domain All Sel nT T All Sel nT T C S
TMS 18 18 16 18 18 18 18 18 0 0 18 0
TurnAndOpen 12 12 14 15 17 17 17 17 0 0 17 15
Storage 17 17 17 17 17 17 17 17 17 9 17 17
DriverLog 7 2 6 0 13 0 13 13 13 9 13 12
Floortile 20 20 20 20 20 20 20 20 20 8 20 20
MatchCellar 19 20 20 20 20 20 20 20 0 0 20 20
MapAnalyzer 10 14 9 10 7 7 7 7 7 20 20 20
RTAM 0 6 0 3 20 20 20 20 20 20 20 20
Satellite 12 3 6 2 20 20 20 20 20 20 20 20
Parking 14 20 20 20 20 20 20 20 20 20 20 20
Coverage 129 132 128 125 172 159 172 172 117 106 185 164
IPC score 91.8 1024 951 1058 129.3 126.6 129.3 1293 621 86.2 185 725

Abbreviation: TMS, Temporal Machine Shop.

selection. If a difficult domain is included in the training set, it is easier for the EPM to correctly
identify the planner(s) to exploit on the corresponding testing instances. On the other hand, if
the domain is not considered in the training set, the capability of the EPM-based approach in
selecting the good planner depends only on the informativeness of features and generalization.

Figure 4 provides an overview of the empirical difficulty of the testing domains used in IPC
2014, from both the planning and instances perspectives. The red line (solved problems) repre-
sents the proportion of problems solved per domain. A value of 1 indicates that all the planners
are able to solve all the testing problems; on the contrary, the value of 0 means that no planner can
solve any of the testing problems. Similarly, the green line (planners) reports the planners' per-
spective, as the proportion of planners that can solve all the problems of a domain. Figure 4 clearly
shows that out of the considered domains, four are extremely difficult for the state-of-the-art
domain-independent planners. The difficulty of TMS and TurnAndOpen derives from the fact
that their problems need actions to be executed concurrently in order to be solved.

Table 17 shows the results in terms of the number of solved problems and IPC runtime
score of the considered classification and regression EPMs, using different sets of features, on
the Unknown and Known testing sets. On these testing sets, the best basic solver according to
either coverage or runtime is LPG. LPG provides better coverage results than the proposed clas-
sification and regression-based algorithm selection approaches. This is true also for the B4P
static portfolio that, in fact, includes LPG as well. The best basic planner and the static portfo-
lio are selected (configured) according to the performance of considered planners on the testing
instances; hence, they are exploiting information that is not available to the algorithm selec-
tion approaches and that is not available before having the instances solved. Algorithm selection
approaches rely on a single (selected) planner for generating a solution for a given planning
problem; instead, the B4P can fully exploit the available CPU time for running four planners for
a considerable amount of time (LPG, Yashp2, Yashp3, and TFD).

Algorithm selection techniques aim to select planners that solve the given problem instances
in minimum time. In the case of regression techniques, predicted-to-be-fastest planners are

24_|_W Computational CENAMOR ET AL.
ILEYﬂ s
Inte

0.9 T T
- Solved Problems —}—

Planners
0.8]

0.7 E

05 |

04

0.2

0.1 =

0
Parking Satellite Mapanalyser RTAM MatchCellar Floortile Driverlog Storage TurnandOpen TMS

FIGURE 4 The red line (Solved Problems) is the proportion of the problems solved by all the planners. The
green line (Planners) is the proportion of the planners that solved all the problems in the particular domain
[Color figure can be viewed at wileyonlinelibrary.com|

TABLE 17 Coverage and total International Planning Competition (IPC) score of the regression and
classification empirical performance models exploited for algorithm selection, of the best basic solver according
to coverage (Best), of the virtual best solver (VBS), and of a static portfolio configured on the testing problems
(B4P). Bold indicates the best performance

Unknown Test Set
Classification Regression Best VBS B4P
All Sel nT T All Sel nT T
Total 238 167 260 229 309 309 301 309 360 437 404

IPCscore 1751 1779 183.0 1684 277.0 277.0 269.2 277.0 242.6 437 249.6
Known Test Set

Classification Regression Best VBS B4P
All Sel nT T All Sel nT T
Coverage 79 78 71 78 115 111 115 114 143 162 153

IPC score 50.0 57.3 64.2 54.8 113.1 1102 110.2 108.6 88.7 162.0 90.0

selected in order to solve the given problem instance; classification-based selection instead tries
to identify a planner that will solve the problem regardless of the expected runtime. However,
as observed in our experiments, the classification-based approaches underperform the regression
approaches.

On the Unknown testing set, we observed that the algorithm selection approaches are strug-
gling with domains in which very few planners are able to solve some instances. This is the case,
for example, of the TMS domain: the regression approaches tend to select LPG, which is not able
to solve any problem. On such a test set, we noticed that using—instead of a portfolio—a single

http://wileyonlinelibrary.com

CENAMOR ET AL. WIL EYﬂ g:mmmnlJ_ZS

planner that shows the best coverage on training instances does not necessarily lead to the best
results.

Analyzing the importance of each feature set, we made several observations. The Sel set
achieves good performance in the classification approach (see Table 16). The only exception can
be observed on the Unknown test set: in that case, despite a remarkably high IPC score, the
number of solved instances is significantly lower than that achieved when exploiting different
sets of features (see Table 17). On the Unknown testing set, the use of non-Temporal features
leads to the best performance of the classification EPM approaches (see Table 17). Temporal fea-
tures, on the other hand, are useful for the regression approaches on the Unknown test sets
(see Table 17).

The results shown in Table 17 confirm that the regression EPMs are able to effectively select
planners for solving previously unseen instances and show that the very small set of selected
features (Sel) is a valuable source of information for performing algorithm selection on either
previously seen or previously unseen domains and problem instances.

6.4 | Discussion

The algorithm selection approaches presented in the previous section exploit EPMs for selecting
a single planner for solving a given planning problem. In this section, we shed some light on the
selected planners.

As Table 16 shows, on the four “unseen” domains in the IPC 2014 set (highlighted in gray
in the Table), the regression approaches tend to provide better prediction performance on aver-
age; hence, they are able to better generalize on previously unseen domains. On the other hand,
the classification approaches are unable to select a good planner for the Road Traffic Accident
Management (RTAM) domain but are able to identify a suitable planner for the MapAnalyzer
domain. Table 18 shows the planners selected by the particular EPMs using the different sets
of features. The classification approaches usually exploit more different planners per domain.
In every domain except Floortile, the regression approaches select one single planner per set of
features (in MatchCellar and DriverLog, different planners were selected while considering a
different set of features). This, in combination with results shown in Table 16, supports the obser-
vation that a single planner usually performs well on problems from the same domain. However,
we conjecture that this is due to the fact that benchmarks for IPCs are usually selected from a
homogeneous distribution and are generated using a single problem generator. This can lead to
structurally similar problem instances, on which a single planner can excel.

By analyzing the results shown in Table 18, we can derive that the difference in performance
between the regression EPMs using the selected set of features, and the other sets, mainly arises
in the DriverLog domain. In that domain, TFD does not solve any problem; thus, selecting it has a
detrimental effect on performance. The winner of the IPC 2014 temporal track—Yahsp3-MT—is
never selected by the regression EPMs and is selected only in one domain by the classifica-
tion EPMs. Similarly, the previous version of that planner is rarely used. This is possibly due
to the fact that these planners show impressive performance on a very limited number of
domains, particularly RTAM and MapAnalyzer, which are not included in the training set. We
also noticed the remarkable performance of the LPG planner; although it has been developed
more than a decade ago, it is competitive with the current state of the art of temporal plan-
ning. Finally, Table 19 summarizes the number of times that each planner was selected by the
considered EPMs.

x| wi LEYﬂ mm"‘

CENAMOR ET AL.

TABLE 18 Planners selected by the classification or regression empirical performance models,

with different sets of features on the International Planning Competition 2014 benchmarks

DriverLog

Floor

Map

MatchCellar

Park.

RTAM

Satellite

Stor.
T™S
T&O

LPG
POPF2
TFD
Y2
ITSAT
ITSAT
LPG
LPG
POPF2
TFD
ITSAT
ITSAT
POPF2
TFD
POPF2
Y2
Y2-MT
Y3-MT
LPG
TFD
Y3-MT
LPG
POPF2
TFD
ITSAT
LPG
ITSAT
ITSAT
POPF2
TFD

All

0
0
3
17
0
10
10

Classification
Sel nT
0 2
3 0
14 3
3 13
0 2
0 20
20 0
0 0
0 0
20 14
0 6
0 9
0 4
20 7
0 0
20 0
0 0
0 20
6 0
14 17
0 3
0 0
20 0
0 2
0 18
20 20
20 20
0 0
11 2
9 18

All

20
0
0

(=]

Regression
sel nT
0 20
0 0
20 0
0 0
0 0
20 15
0 5
20 20
0 0
0 0
0 0
0 0
20 0
0 20
0 0
0 0
20 20
0 0
20 20
0 0
0 0
20 20
0 0
0 0
0 0
20 20
20 20
0 0
0 0
20 20

Abbreviations: POPF2, Forward-Chaining Partial Order Planner; T&O, TurnAndOpen; TFD, Temporal Fast Down-

ward; TMS, Temporal Machine Shop.

TABLE 19 Number of times each planner has been selected by the classification or
regression empirical performance models exploiting different sets of features. nT and T

refer to non-Temporal and Temporal sets of features, respectively

LPG
Yahsp2
Yahsp2-MT
POPF2
ITSAT

TFD
Yahsp3
Yashp3-MT

All

30
17
9
29
48
67
0
0

Classification
Sel nT
46 22
23 13

0

34

20 57

77 61
0
23

T
20

55

77
0

23

All
105

20

35
40

0

Regression
Sel nT
80 100
0 0
20 20
20 20
40 40
40 20

0

105

20

35
40

0

Abbreviations: POPF2, Forward-Chaining Partial Order Planner; TFD, Temporal Fast Downward.

CENAMOR ET AL. WI LEY‘“ g:ﬁl'mﬁ'mJ_”
7 | CONCLUSION

In this paper, we filled the gap between classical and temporal planning in terms of predicting
planners’ performance. Our work establishes a new extensive set of features that can be extracted
from temporal planning problems. In particular, we introduced 71 new temporal-specific features
and merged them with “classical” (propositional) features that can be extracted also from tem-
poral problems; in total, 139 planning-specific features have been considered for generating both
classification and regression EPMs, which are exploited to select online the planner for solving
a given planning task. The large empirical analysis performed in this work (i) demonstrates that
the performance of many temporal planners can be accurately predicted using EPMs; (ii) gives
insights into the motivations that make planners hard to predict, particularly running out of mem-
ory and the concurrency requirements; (iii) provides a valuable and informative set of 11 features
that can be used for effectively predicting the performance of temporal planners; (iv) shows that
both temporal-specific and nontemporal features are useful for predicting planners’ performance;
and (v) demonstrates that using EPMs for algorithm selection can significantly improve the cur-
rent state of the art of temporal planning. Our work also highlights a worrying evidence: in terms
of coverage, planners that have been introduced more than a decade ago are able to achieve per-
formance comparable—and often better than—to that of the most recent planning systems. LPG
results emphasized this idea; in many cases, it works better than the more recent planners.

Future work includes the extension of the current set of features by considering probing
features—information gained by short runs of different solvers—and the integration of different
planners' configurations obtained by using algorithm configuration tools, such as the sequential
model-based algorithm configuration.* Finally, we plan to test the suitability of deep learning
approaches for generating EPMs.

ACKNOWLEDGMENTS

This research was funded by the Czech Science Foundation through project no. 18-07252S and
by the Operational Programme for Research, Development and Education (OP VVV) through
project no. CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics.” The authors
would like to acknowledge the use of the University of Huddersfield Queensgate Grid in carrying
out this work.

ORCID

Mauro Vallati"'® https://orcid.org/0000-0002-8429-3570
Lukds$ Chrpa"® https://orcid.org/0000-0001-9713-7748

REFERENCES

1. Kotthoff L. Algorithm selection for combinatorial search problems: a survey. AI Magazine. 2014;35(3):48-60.

2. XuL, Hutter F, Hoos HH, Leyton-Brown K. SATzilla: portfolio-based algorithm selection for SAT. J Artif Intell
Res. 2008;32:565-606.

3. Gebser M, Kaminski R, Kaufmann B, Schaub T, Schneider MT, Ziller S. A portfolio solver for answer set
programming: preliminary report. In: Delgrande JP, Faber W, eds. Logic Programming and Nonmonotonic
Reasoning: 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings.
Berlin, Germany: Springer Berlin Heidelberg; 2011:352-357. https://doi.org/10.1007/978-3-642-20895-9_40

https://orcid.org/0000-0002-8429-3570
https://orcid.org/0000-0002-8429-3570
https://orcid.org/0000-0001-9713-7748
https://orcid.org/0000-0001-9713-7748
https://doi.org/10.1007/978-3-642-20895-9_40

28_'_ Computational CENAMOR ET AL.
Wi LEYﬂ oy

4.

Fawecett C, Vallati M, Hutter F, Hoffmann J, Hoos HH, Leyton-Brown K. Improved features for runtime
prediction of domain-independent planners. In: Proceedings of Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS); 2014; Portsmouth, NH.

Cerutti F, Giacomin M, Vallati M. Algorithm selection for preferred extensions enumeration. In: Compu-
tational Models of Argument: Proceedings of COMMA 2014. Amsterdam, The Netherlands: IOS Press BV;
2014:221-232. Frontiers in Artificial Intelligence and Applications; vol. 266.

Hutter F, Xu L, Hoos HH, Leyton-Brown K. Algorithm runtime prediction: methods & evaluation. Artificial
Intelligence. 2014;206:79-111.

7. Rice JR. The algorithm selection problem. Adv Comput. 1976;15:65-118.

8. Fink E. How to solve it automatically: selection among problem-solving methods. In: Proceedings of the

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fourth International Conference on Artificial Intelligence Planning Systems (AIPS); 1998; Pittsburgh, PA.

Howe A, Dahlman E, Hansen C, von Mayrhause A, Scheetz M. Exploiting competitive planner performance.
In: Proceedings of the 5th European Conference on Planning: Recent Advances in Al Planning (ECP); 1999;
Durham, UK.

Roberts M, Howe AE, Wilson B, desJardins M. What makes planners predictable? In: Proceedings of the
Eighteenth International Conference on International Conference on Automated Planning and Scheduling
(ICAPS); 2008; Sydney, Australia.

Roberts M, Howe A. Learning from planner performance. Artificial Intelligence. 2009;173(5-6):536-561.

Cenamor I, de la Rosa T, Fernandez F. Mining IPC-2011 results. In: Proceedings of the 3rd Workshop on the
International Planning Competition (ICAPS); 2012; Sdo Paulo, Brazil.

Cenamor I, de la Rosa T, Fernadndez F. Learning predictive models to configure planning portfolios. In:
Proceedings of the 4th Workshop on Planning and Learning (ICAPS-PAL); 2013; Rome, Italy.

Helmert M. The Fast Downward planning system. J Artif Intell Res. 2006;26:191-246.

Gerevini A, Saetti A, Vallati M. Exploiting macro-actions and predicting plan length in planning as satisfiabil-
ity. In: Proceedings of the 12th International Conference on Artificial Intelligence Around Man and Beyond
(AT*IA); 2011; Palermo, Italy.

Vallati M, Serina I, Saetti A, Gerevini AE. Identifying and exploiting features for effective plan retrieval
in case-based planning. In: Proceedings of the Twenty-Fifth International Conference on International
Conference on Automated Planning and Scheduling (ICAPS); 2015; Jerusalem, Israel.

Cenamor I, de la Rosa T, Fernandez F. The IBaCoP planning system: instance-based configured portfolio.
J Artif Intell Res. 2016;56:657-691.

Hutter F, Hoos HH, Stiitzle T. Automatic algorithm configuration based on local search. AAAI.
2007;7:1152-1157.

Gomes CP, Selman B. Algorithm portfolios. Artificial Intelligence. 2001;126(1-2):43-62.

Leyton-Brown K, Nudelman E, Andrew G, McFadden J, Shoham Y. A portfolio approach to algorithm
selection. In: Proceedings of the 18th international joint conference on Artificial intelligence (IICAI); 2003;
Acapulco, Mexico.

Malitsky Y. Instance-specific algorithm configuration. Instance-Specific Algorithm Configuration. Cham,
Switzerland: Springer International Publishing; 2014:15-24.

Gebser M, Kaufmann B, Neumann A, Schaub T. clasp: a conflict-driven answer set solver. In: Logic Program-
ming and Nonmonotonic Reasoning: 9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17,
2007. Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2007:260-265.

Hoos H, Lindauer MT, Schaub T. claspfolio 2: advances in algorithm selection for answer set programming.
Theory Pract Log Program. 2014;14(4-5):569-585.

Gerevini A, Saetti A, Vallati M. Planning through automatic portfolio configuration: the PbP approach. J Artif
Intell Res. 2014;50:639-696.

Helmert M, Roger G, Karpas E. Fast Downward Stone Soup: a baseline for building planner portfolios. Paper
presented at: 3rd Workshop on Planning and Learning (ICAPS); 2011; Freiburg, Germany.

Seipp J, Sievers S, Helmert M, Hutter F. Automatic configuration of sequential planning portfolios. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI); 2015; Austin, TX.
Cenamor I, de la Rosa T, Ferndndez F. IBaCoP and IBaCoP2 planner. In: Proceedings of the 8th International
Planning Competition; 2014.

Vallati M, Chrpa L, Grze§ M, McCluskey TL, Roberts M, Sanner S. The 2014 international planning competi-
tion: progress and trends. AI Magazine. 2015;36(3):90-98.

CENAMOR ET AL. WIL Eyﬂ g;ﬁl'mﬁ'“tJ_zg

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45.

46.

47.
48.

49.

Malitsky Y, Wang D, Karpas E. The AIIPACA planner: all planners automatic choice algorithm. Paper
presented at: International Planning Competition (IPC); 2014.

Rizzini M, Fawcett C, Vallati M, Gerevini AE, Hoos HH. Static and dynamic portfolio methods for optimal
planning: an empirical analysis. Int J Artif Intell Tools. 2017;26(1):1-27.

Ghallab M, Nau D, Traverso P. Automated Planning: Theory and Practice. San Francisco, CA: Morgan
Kaufmann Publishers; 2004.

Fox M, Long D. PDDL2.1: an extension to PDDL for expressing temporal planning domains. J Artif Intell Res.
2003;20:61-124.

Bedrax-Weiss T, McGann C, Bachmann A, Edgington W, Iatauro M. EUROPA2: User and Contributor Guide.
Technical report. Mountain View, CA: NASA Ames Research Center; 2005.

Frank J, Jénsson AK. Constraint-based attribute and interval planning. Constraints. 2003;8(4):339-364. https://
doi.org/10.1023/A:1025842019552

Bickstrom C, Nebel B. Complexity results for SAS* planning. Computational Intelligence. 1995;11:625-656.

Eyerich P, Mattmiiller R, Roger G. Using the context-enhanced additive heuristic for temporal and numeric
planning. In: Towards Service Robots for Everyday Environments. Berlin, Germany: Springer-Verlag Berlin
Heidelberg; 2012:49-64.

Rankooh MF, Mahjoob A, Ghassem-Sani G. Using satisfiability for non-optimal temporal planning. In: Logics
in Artificial Intelligence. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2012:176-188.

Hoffmann J. Analyzing search topology without running any search: on the connection between causal graphs
and h+. J Artif Intell Res. 2011;41:155-229.

Howe A, Dahlman E. A critical assessment of benchmark comparison in planning. J Artif Intell Res.
2002;17:1-33.

Gerevini A, Saetti A, Serina I. Planning through stochastic local search and temporal action graphs in LPG. J
Artif Intell Res. 2003;20:239-290.

Coles AJ, Coles AI, Fox M, Long D. Forward-chaining partial-order planning. In: Proceedings of the Twenti-
eth International Conference on International Conference on Automated Planning and Scheduling (ICAPS);
2010; Toronto, Canada.

Vidal V. YAHSP2: keep it simple, stupid. In: Proceedings of the 7th International Planning Competition (IPC);
2011.

Vidal V. YAHSP3 and YAHSP3-MT in the 8th international planning competition. In: Proceedings of the 8th
International Planning Competition; 2014.

Quinlan JR. C4. 5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann; 1993.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an
update. ACM SIGKDD Explor Newsl. 2009;11(1):10-18.

Rodriguez J, Kuncheva LI, Alonso CJ. Rotation Forest: a new classifier ensemble method. IEEE Trans Pattern
Anal Mach Intell. 2006;28(10):1619-1630.

He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263-1284.

Kohavi R. The power of decision tables. In: Machine Learning: ECML-95. Berlin, Germany: Springer-Verlag
Berlin Heidelberg; 1995:174-189.

Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for general algorithm con-
figuration. In: Learning and Intelligent Optimization. Berlin, Germany: Springer-Verlag Berlin Heidelberg;
2011:507-523.

How to cite this article: Cenamor I, Vallati M, Chrpa L. On the predictabil-
ity of domain-independent temporal planners. Computational Intelligence. 2019;1-29.
https://doi.org/10.1111/coin.12211

https://doi.org/10.1023/A:1025842019552
https://doi.org/10.1023/A:1025842019552
https://doi.org/10.1111/coin.12211

	On the predictability of domain-independent temporal planners
	Abstract
	INTRODUCTION
	RELATED WORK
	AUTOMATED PLANNING
	Classical planning
	Temporal planning

	PROBLEM CHARACTERIZATION
	Propositional PDDL
	Temporal PDDL
	General SAS+
	Temporal SAS+
	SAT size
	Feature extraction

	EXPERIMENTAL SETTINGS
	Planners
	Benchmarking
	Groups of features

	EXPERIMENTAL RESULTS
	Classification
	Regression
	Exploiting EPMs for algorithm selection
	Discussion

	CONCLUSION
	REFERENCES

