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Abstract

The portfolios of planners have arised as a great idea
in automated planning. Their main challenge is how to
combine portfolio components, i.e. the base planners.
The most extended solution is the static combination of
the planners, where the same configuration is used for
all the problems in all the domains. This solution is not
very flexible, and it might be less efficient than a partic-
ular combination of planners for every single problem.
In the middle, a portfolio could be configured for a spe-
cific domain, so all the problems in such domains are
solved with the same portfolio configuration. For this
reason, we analyze different ways to configure a port-
folio for each problem and create some strategies and
techniques to exploit the planning portfolios.

Introduction
In the last years, different planning algorithms has been cre-
ated in the planning community. However none of them
dominates in all cases (domains and/or problems). This
fact is presented in the International Planning Competition
(IPC), where there is a global winner in each track, but this
winner is not the best planner for all problems or in all do-
mains. For this reason, the idea of combining different algo-
rithms or planners is excellent because we can always find
an optimal combination. This combination requires the se-
lection of the best planner in each problem. However finding
an optimal combination “a priori” is a hard task.

In the state of art, there are several examples. One of them
is Fast Downward Stone Soup (FDSS) (Helmert et al. 2011),
that won the optimal track and obtained a second position in
the sequential satisficing track of 2011 (IPC-7). FDSS uses
the same configuration in all domains and problems. Such
configuration is obtained with a learning phase with a huge
number of problems in different domains. Fast Downward
(FD) autotune (Fawcett et al. 2011) refers to the specific
configuration resulting from using mean runtime to find an
initial satisficing plan as the optimisation metric.

Therefore, FD systems described above can be considered
as a set of search method with different heuristics. The spe-
cific configurations are the result of a large experimentation
to extract a good performance independently of the domain.
For each configuration, a sorted list of running time and al-
gorithm is defined, with a group of heuristics. Opposite, our

research try to extract a different configuration per problem.
Our approach is a dynamic method to configure a portfolio
in a flexible way that differentiates the features (and hence,
the complexity) of the problems. The utilization of several
planners strengthen the diversity of the portfolio, because
it does not always run the same configuration or the same
components. And it is configurable in function of the sys-
tem constraints because the environment is not always the
same; for example, the time limit, the memory, the number
of solutions expected, time request, etc. may be different,
depending on the specific deployment of the portfolio.

PbP planner (Gerevini, Saetti, and Vallati 2009) creates a
portfolio with one configuration per domain. PbP and PbP2
won the two last learning tracks and introduce several differ-
ences in relation to FD system. In the learning track, knowl-
edge is learned for each domain and, in consequence, the
planner is configured with a different method. This planner
receives knowledge for each domain, and its configuration
depends of this knowledge. This fact supposes that the plan-
ner does not have the same configuration in all cases like FD
system. This approximation also contracts with our research
because our approach is more specific: not only it is possi-
ble to consider different configuration per domain, but per
problem.

We introduce a novel idea that can be used for domain-
independent or domain-dependent contexts, given that a
portfolio may have a different configuration per instance.
We can create a different portfolio as function of the require-
ments or the constraints, and it can be adaptable for future
requirements. There are a lot of possibilities in such con-
straints, like the time limit. Nowadays, the competitions usu-
ally run problems for 1800 seconds (a long time that permits
uniform distributions of running time among all base plan-
ners to provide good results). However, the system could
have a 300 time bound, or even a small slot of time such
as 10 seconds. Another possibility is restricting the plan-
ner components to compare different portfolio combination
techniques. In this situation, the comparative between tech-
niques is fair because the only difference is the chosen al-
gorithm. Besides, portfolios could use more than one core
and they may require an special configuration. Other restric-
tion is the number of output planners, for example, selecting
one planner for each new instance. Another important issue
is the amount and diversity of available training data, which



is related also with the specific objective of the portfolio. If
we want to build a portfolio for a specific domain, it may be
interesting to evaluate whether using training data from ex-
ecutions in other domains is useful or not. As a conclusion,
there are a lot of requirements that it is possible to consider
to configure a planner portfolio.

In this article we explain a general idea of our research, its
process and the preliminary results. We introduce the inputs
of the portfolio, its different configurations and the common
elements.

Learning Planning Knowledge
The executions of planner generate a lot data, and these data
might be analysed to create knowledge through the CRISP-
Data Mining process (Chapman et al. 2000; Han, Kamber,
and Pei 2006). This methodology appears in the figure 1.
The first phase in this process is the business understanding,
which means we have to know the objective to extract the
new knowledge. Our aim is extracting knowledge to config-
ure a portfolio. The input of the system are the base planners,
the domains, the problems and the constraints. An example
of the constraints are the global time, the memory limit, etc.

Figure 1: Data workflow of the mining process

A good instance characterization is necessary. For this
reason, the planning problems are represented with several
features to differentiate each other. An accurate representa-
tion of the problems is an important point in this process
because it is the source of following steps. This procedure is
realized in the second step of the data mining process: data
preparation. In this part of the process, the data is cleaned,
modified, and also it is possible to create new derived at-
tributes.

The following step is modelling the data through predic-
tive models and evaluating them to select the model with
the best performance. In this part, we select and apply vari-
ous mining functions for the same objective. When the final
modelling phase is completed, a model of high quality has
been selected for the deployment.

The last step is the deployment, where we use the mod-
els to support the configuration of the portfolio. In this pro-
cess, we use the learning process to exploit the combination
of planners. The deployment process appears in the algo-
rithm 1. The input of this algorithm is the problem, the do-
main and the constraints. If the system has a default config-
uration, the output is a base strategy. In other case the new
problem is transformed in several features and it queries the
decision model for predicting the planners and their times.
The assigned time has two different variants, the first one is
assigned the same time per each planner and the other is to
predict the time queriying a regression model.

Data: Problem, Domain and Requirements
Result: Configuration Portfolio
if Default Configuration then

Assign fix time tn per each planner p in Pn;
else

Extracted Features;
Select potential planners in Pn −→ Pc where Pn ⊇
Pc ;
if Regression Model then

for planner p in Pc do
Obtain a time a p −→ tpn

end
else

Assign the same time per each planner P in Pc;
end

end
Algorithm 1: Deployment of the System

The system configuration have been evaluated with differ-
ent requirements and each part changes different elements.
The general process is the same, but we change initial data,
including more problems and domains, the characterization
process,including more features, the numbers of CPU, mono
core or multi core and the time (1800 and 300 seconds).

Initial Settings
In the first case, we used all the planners of the last
IPC in sequential satisficing track (Garcı́a-Olaya, Jiménez,
and Linares López 2011). The domains and the problems
came from the same track. The training instances consist
of a group of features that describe the problem (47 fea-
tures) (Cenamor, de la Rosa, and Fernández 2012), the time
of the best solution for each planner, and if a planner find
the solution. The dataset has 7560 from 27 planner with 20
problem for each of the 14 domains. The created models try
to decide which is the correct planner to solve a problem
and the execution time the planner needs. We evaluate the
models with two different techniques. One of them uses half
part of the data for training and the other half to test in the
fist evaluation case. The training and test data have similar
distributions, i.e. there is the same number of problems per
each domain. In the other evaluation method, we used leave
one domain out: training with all domains but one domain
simulating the results in new domains.

The results of this part has good performance, however



it might exist a problem. It is possible that a created model
with 140 different problems did not have enough diversity
and it did not generalise in the fist case. In the second eval-
uation the situation is similar because the training has 260
problems. To compare the strategies we consider a, unin-
formed strategy, that is, the combination of all planners com-
ponents with the same proportion of time (Equal Time). The
knowledge strategies results are better than the Equal time
strategy (Cenamor, de la Rosa, and Fernández 2013). How-
ever a small training set supposes models with overfitting
and that do not generalize well. And the final result (the
portfolio) did no solve enough problems to improve a sin-
gle planner.

For this reason, we decided to increase the number of
problems and domains regardless the repeated domains to
create another configuration.

Second Settings
In this setting, we consider all the problems in sequential sat-
isfating track in the three last competitions (IPC5-6-7) and
the problems in the two last competitions in learning track.
In this case, for training all the problem in the IPC-5 and
IPC-6 and for test all in the IPC-7. The dataset has 9480
from 790 problems from 25 domains for training. Increas-
ing the number of instances the result model obtain better
performance and generalize better than the previous setting.
In addition, we created new features to improve the char-
acterization of the problem: the differences between initial
states and more information about the problem (97 features
in total) are included. Hence, in this configuration, the data
preparation phase is more elaborated than the previous one.
We could think that the results are lightly worse than in the
first setting. However, we believe that the portfolio created
in this setting would generalize better to a significantly dif-
ferent test set.

Third Settings
When creating portfolios, to maintain planning diversity is
very important because the drawbacks of a planner can be
solved by the strengths of the others. However, in the last
competition, many planners obtained similar performance,
so they are not relevant because we need good planners that
provide diversity.

We decide what planners are relevant with a Pareto effi-
ciency technique (Censor 1977) between the quality of the
best solution found and the time (in seconds). 1. The cho-
sen planners receive the same running time, obtaining good
performance compared with the previous results, as will be
shown in the experiments reported below.

The following step is focused on finding the relevant fea-
tures, because in data mining, a big group of features does
not mean a good characterization. In some cases, a smaller
and better informed group is enough to model the data and
extract the relevant information. The result of this part is
promising because it improves the previous configuration.

1Initial study was performed with the 27 planners of IPC-7. In
addition, we included LPG-tn (Gerevini et al. 2004).

Other Settings
We configure the system to next planning competition in dif-
ferent tracks(IPC-8). The first track is sequential satisfating,
where the only restriction is the time limit (1800 seconds
equal than the previous configurations). In this track, the bet-
ter configuration found (selected planner and features) is the
Equal Time Pareto Dominance with LPG-tn planner. In Se-
quential agile track, the time is 300 seconds. In this case, the
base strategy is a sorted list with the medium time to find
the first solution. These results came from a statistical study
where we obtained the medium time to find the first solution
in the selected planners. In this case, the base strategy in
sequential satisfating is not enough because the slice is too
small (25 seconds per planner) and in the most of the cases,
the planners spend most of the time in the preprocess phase,
and nor even start the search procedure. The second config-
uration is based on classification models with the learning
phase with the solution in this time (300 seconds). In Se-
quential multi-core track, the time limit is 1800 seconds but
we dispose 4 cores to run the portfolio. The base strategy
is the same than in sequential satisfating but in 4 different
threads (three planner per each CPU). The second strategy
is the result of the classification model running the planners
simultaneously.

In the learning track, the time limit is 900 seconds and the
training data is specific per domain. The first configuration
is the result of learning a classification model and the other
configuration is the result of learning the regression model.
The last configuration uses the two learning models, one to
decide the planners and the second to assign the runtime.

Preliminary Results
In this section, the results of different settings of this re-
search are reported. The evaluation domains are all in the se-
quential satisfating track in IPC-7. The first column is Equal
Time (ET), that consists in assigning the same time to the 27
initial planners, previously mentioned. The second column
(C47) is the result of applying the classification model with
the first configuration. This model is a decision tree created
by WEKA (Witten and Frank 2005) (j48 algorithm) with ac-
curacy 88.75%, and the selected planners are the five with
the best confidence in the classification model. This results
are extended in a previous work (Cenamor, de la Rosa, and
Fernández 2013).

In the third column (ETP) appears the dominance se-
quential satisfating planners with the same time. In the next
columns (C96 and C35), the dominance appears and include
LPG-tn planner. The C96 column is the result of the domi-
nance with IPC5-6 and learning tracks for training. The clas-
sification model in this case is a decision tree (j48) with
94.63% coverage and the number of planners used is ten.
We evaluate many classification algorithms as reported in
previous works (Roberts and Howe 2009). The C35 column
is the result of the same group of training but it includes the
feature selection, the classification model is a decision tree
(j48) with 94.82% coverage and the selected planner are the
five with the best confidence in the classification model. In
all cases the models are the models with best performance.



This results are compared with the winner of the last com-
petition in sequential satisficing track (lama-2011).

General Pareto
ET C47 ETP C96 C35 LAMA

barman 20 20 20 20 20 20
elevators 20 20 20 20 20 20
floortile 8 8 9 7 11 6
nomystery 15 17 16 17 17 10
openstacks 20 20 20 20 20 20
parcprinter 20 20 20 20 20 20
parking 12 20 14 17 19 20
pegsol 20 20 20 20 20 20
scanalyzer 18 18 17 17 18 20
sokoban 17 19 18 18 19 19
tibybot 16 19 17 17 18 19
transport 20 19 20 19 20 16
visitall 20 20 20 20 20 20
woodworking 20 20 20 20 20 20
Total 246 260 251 252 262 250

Table 1: Preliminary results in the different configurations

In this research we look for a technique to combine plan-
ners and improve the result of a single one. The theoretical
limit is the number of problems that can be solved by at least
one base planner. In the case of the general strategies, such
limit is 266 problems because, in some domains all prob-
lems are solved by one planner, but in domains like tidybot,
nomystery and sokoban, only 19 problems can be solved. In
the case of the floortile domain, only 9 problems are solved.
The maximum solved problem is increased because LPG-tn
solved more problem in floortile domain (3 more problems).
In the column C35, the limit is 269 problems.

The results show that there are some accurate configu-
rations and that the performance depends of the input and
the characterization of the problem. However, the results
indicate that the planner combination is a interesting topic
and the proposed approaches are good methods to select the
components. In other scope like SAT solvers, this idea have
been developed with good results, and the winner of the last
competition in portfolio track (Malitsky et al. 2013) use sim-
ilar process with other components and different output.

Future Work
The results of this research might have different alternatives.
The planner combination has better performance than a sin-
gle planner in most of the cases. However the reason might
be that the 80% of the problems in sequential satisfating
track of the last competition are solved in less than 70 sec-
onds. For this reason, the strategy to assign the same time
for all is effective to improve the result of the winner. Sim-
ilar strategy (Seipp et al. 2012) is used in optimal planning
and it obtained good performance too. A challenge of port-
folios resides in finding a good combination in less time,
similar to the agile track in the next competition. Nowadays,
there are a few restrictions in the competitions, the time is
one of them (almost the most important); but there are oth-

ers constraints that might change the performance of the
planners (limitation in the loops, multithreading, the com-
ponents, etc.). This is an area without enough research and
there are exploration possibilities because the experimenta-
tion in the planning community is usually run in controllable
environments. They tend to have the same configuration and
this situation is not authentic in real world. There are a lot
of limitations and these can modelled in a planner portfo-
lio (running time, memory, cores number, etc.) This are the
requirements explained and

Other ideas rely on fixing the planner components and
finding the best strategy, limit the selected planners (output
planners) or limit other resources. If it takes into account this
fact, the predictive models will be more informative to just
select a single planner or a reduced set. This approximation
is valid for any time restriction but it is not for a multi-core
approximation. In the last case, the portfolio need almost
one planner per each thread. This point supposes that there is
not only one approximation to configure a planning portfo-
lio, but it is possible to create a general method to configure
them.

Other line of research is including the execution informa-
tion for take decisions in run-time. With the execution in-
formation it might strengthen the synergy of the planners.
For example, if planner A did not find the solution, the plan-
ners C, F and G neither solved. In this scope, it is possible
to create predictive models with that information, and the
training data increases with each execution (where learning
improves upon the plans created for execution). In addition,
it is possible to combine the continuous learning with a pri-
ori knowledge to configure a portfolio and create a more
adaptable method.
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