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Abstract

This manuscript describes several planning portfolios
that use the same base planners. Our Instance Based
Configured Portfolios follow two different strategies.
IBaCoP is configured a priori following a Pareto effi-
ciency approach to select a sub-set of planners (baseline
strategy), which receive the same execution time for all
planning problems. On the contrary, IBaCoP2 decides
for each problem the sub-set of planners to use. Such de-
cisions are based on predictive models learnt also with
training instances gathered from previous executions of
the base planners. Both portfolios compete in the se-
quential satisficing, agile and multi-core tracks.

Introduction
In the state of the art, there are several portfolios that de-
fine different ways to combine simple base planners. All of
them are motivated by the general idea that none of existing
planners dominates all other in all cases. The most popular
strategy is the static, where the portfolio components and the
time for each planner is defined “a priori” and maintained
for all domains and problems. Fast Downward Stone Soup
(FDSS) (Helmert 2006) is an example of this type of portfo-
lio. It has various configuration based on previous planning
results. It obtained good results in the last IPC (International
Planning Competition).

The family of PbP portfolios, PbP and PbP2 (Gerevini,
Saetti, and Vallati 2009; 2011), generates domain-specific
multi-planners from a set of domain-independent planning
techniques. It generates macro-actions, optimizes planner
parameters and selects specific planners for each domain.
Therefore, it generates a different configuration for each do-
main. This family of portfolios won both learning tracks that
were held in past IPCs.

All our portfolios use as base planners the ones compet-
ing in the last IPC in the sequential satisficing track (27
planners), plus LPG-td. The different configurations are ob-
tained applying two different strategies. One is a static con-
figuration that obtains a sub-group of planners (IBaCoP),
and the other is a dynamic portfolio configured through
CRISP-Data Mining methodology (Chapman et al. 2000;
Han, Kamber, and Pei 2006) (IBaCoP2).

IBaCoP is the result of applying the Pareto efficiency
technique (Censor 1977) to select a sub-set of planners from

the planners in sequential satisficing track plus LPG-td. We
select the planners that dominates all others in at least one
domain (from a set of training domains), taking into account
quality and time. We assign the same running time for all
selected planners

IBaCoP2 is a portfolio auto configurable with a classifica-
tion model. This portfolio is an evolution of IBaCoP, since
it takes as base planners, the planners selected by IBaCoP.
However, IBaCoP2 performs a second planner selection us-
ing predictive models. These models are the result of learn-
ing processes and predict the behaviour of the planners in
future problems, i.e. whether they will be able to solve the
problems or not. The planners with higher confidence are se-
lected and ordered following such confidence. Then, running
time is divided uniformly among them.

The remainder of the paper is organized as follows. In the
next section we present the general ideas of the portfolios,
with their components, the training data, and how we finally
created the portfolios. We finish with the specific informa-
tion of the planners in the different tracks.

General System Description
In this section, we explain the general process to configure
IBaCoP planners. This system is based on a CRISP-Data
Mining and the general idea is depicted in the figure 1.

The first phase in the methodology is to understand the
aims of the data mining process: to extract knowledge from
past planning executions to create portfolio configurations.
Another important consideration is the available inputs of
the process. We have two different inputs: the planners, that
were extracted from the last International Planning Compe-
tition (IPC) plus LPG-td; and the domains and the problems
from different competitions and different tracks. The output
of the process is the configuration of the portfolio, which
comprises the way to combine the initial planner compo-
nents and the assigned time per planner.

The next step is to select and preprocess the data. The
data is obtained from several sources as explained later, but
basically, it can be considered as information about the ex-
ecution of each planner for each problem of every domain.
However, only execution data from the selected planners by
the Pareto efficiency technique are used in following steps.
In addition, data from problems that were not solved by any
planner was eliminated.
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Figure 1: General CRISP-DM Process in IBaCoP system

The following step is problem characterization. We have
created some features to better differentiate the planning ex-
ecutions. In this phase, we also choose the output attribute
in the learning process, which is whether the planner found
a solution for the problem in a 1800 seconds.

To continue with the process, we select and apply a va-
riety of modelling techniques to find the model with higher
accuracy. In this part of the process, it is necessary the divi-
sion of the data into training and test sets, which allow us to
estimate the future performance of the models. The output
models should be evaluated in the context of the business
objectives established in the first phase, i.e. planning capa-
bility of the developed portfolio.

The last phase, the deployment, is the part of the process
that verifies previously held hypotheses through the knowl-
edge discovered in the earlier phases of the CRISP-DM pro-
cess. Particularly, this deployment appears in Figure 1(b),
where the final system gets a new problem and domain, cal-
culate the features, queries to the strategy, and returns the
planners with their runtime.

Data understanding
The first step in the DM process is to know the final objec-
tive. In our case, it is the configuration of portfolios through
the methodology. In the following step, preprocess data, we
analyze all the possibilities for the input of the system (do-
mains, problems and planners) and decide the best possi-
ble selection. In the case of the planners, we started with
all planners from the sequential satisficing track in the last
IPC plus LPG-td. Nevertheless, there are some planners that
obtained similar results, and that do not contribute diversity

to the portfolio. The chosen planners are selected by using
the Pareto efficiency (Censor 1977) technique between the
quality of the best solution found and the time (in seconds)
of the first solution to be found by the planner. Next, it gives
to each planner a score that equals the number of tuples it
Pareto-dominates for the same task.

Selected Planners The Pareto efficiency, performed with
the results of IPC 2011, outputs 11 planners plus LPG-td
planner:

• ARVAND (Nakhost, Valenzano, and Xie 2011)

• FD-AUTOTUNE 1 & 2 (Fawcett et al. 2011)

• FD STONE SOUP (FDSS) 1 & 2 (Helmert et al. 2011)

• LAMA 2008 & 2011 (Richter, Westphal, and Helmert
2011)

• PROBE (Lipovetzky and Geffner 2011)

• MADAGASCAR (Rintanen 2011)

• RANDWARD (Olsen and Bryce 2011)

• YAHSP2-MT (Vidal 2011)

• LPG-TD (Gerevini et al. 2004)

Selected Domains The next step is to define the set of
problems and domains used to learn the models. We need
a wide group of problems and domains to generalize prop-
erly. We have included the planning problems available from
past IPCs, discarding the first four competitions given that
problems are too easy for the state-of-the-art planners.

• IPC5: openstack, pathways, rover, storage, tpp and trucks.

• IPC6: cybersec, elevators, openstack, parcprinter, peg-
sol, pipesworld, scanalyzer, sokoban, transport and wood-
working.

• IPC7: barman, elevators, floortile, nomystery, visi-
tall, tidybot, openstacks, parcprinter, parking, pegsol,
sokoban, scanalyzer, transport and woodworking

• Learning 2008: gold-miner, matching-bw, n-puzzle, park-
ing and sokoban.

• Learning 2011: barman, blockworld, depots, gripper,
parking, rover satellite, spanner and tpp.

We consider all the successful problems, and we did not
take into account repeated domains or repeated problems.
We do not know which domains would be used in the future,
so we need to consider a wide and significant number of
instances for the learning process. Finally, we obtained 1070
different problems to create the learning models.

Data Preparation
The next step is the characterization of the problem (trans-
formed data in DM process). For this task we consider some
features in the planning task previously used (Roberts and
Howe 2009) and include others for a better particulariza-
tion of the problems complexity (Cenamor, de la Rosa, and
Fernández 2012). These features have shown good accu-
racy for configuring portfolios (Cenamor, de la Rosa, and
Fernández 2013). In addition, we create some new features



to improve the characterization of the initial state of the
problem.

Some basic features are directly extracted from the PDDL
files. A group of elaborated features are generated from the
problem translation to the SAS+ formalism (Backstrom and
Nebel 1995) and its induced graphs, i.e., the causal graph
and the domains transition graphs. These features describe
number of edges, weights, variables of the graphs. Besides,
we include statistical information of the graphs, such as the
sum, maximum and standard deviation of the edges and
weights. We also consider other information that appears in
the translation and preprocess of Fast Downward (Helmert
2006) (FD) system.

As new features we include the most representative
heuristic functions computed for the initial state with unit
cost, the ratio hFF/hmax and a set of features to character-
ize the fact balance of the relaxed plan (RP ). We define the
fact balance for fact p, as the number of times p appears as an
add effect of an action belonging to RP , minus the number
of times p is a delete effect of an action in RP , considering
original actions where deletes are not ignore. The intuition
behind fact balances is that high positive values would char-
acterize easier (relaxed) problems for a given domain, since
achieved facts need to be deleted many times. Given that
the number of relevant facts of a planning task is variable,
we compute statistics (i.e., min, max, average and variance)
for the fact balance of the relevant facts. Additionally, we
compute statistics only considering facts that are goals, fol-
lowing the same procedure.

The time to extract features is negligible given that fea-
tures wrt. graphs imply basic arithmetic computations and
heuristic functions are only called once for the initial state.
To finalize the data preparation, we perform a feature se-
lection process where we get the same performance with a
subgroup of all features (35 features). Such features are:

• From the previous work (Cenamor, de la Rosa, and
Fernández 2012), we include the number of objects, the
number of goals, the number of variables in the causal
graph (CG), the ratio between the high level variable and
all variables in the CG, the standard deviation of the num-
ber of input edges in the CG, the average of the number
of output edges in the CG, the maximum and the average
weight of the output edges in the CG, the standard devia-
tion of the number of output edges in high level variables
in the CG, the maximum weight of input edges in high
level variables in the CG, the number of variables in the
domain transition graph (DTG), the number of edges in
the same graph and the maximum weight of input edges
in the DTG.

• As new features from previous work we include: the num-
ber of types of objects, the number of functions, the num-
ber of auxiliary atoms in the translate process between
PDDL to SAS+, the number of implied effect removed,
the number of translator facts and the number of the mu-
tex group in the translator process. In addition, the feature
selection includes the number of relevant facts, the num-
ber of actions, the ratio hFF/hmax, the fact balance (av-
erage and variance), the goal balance (minimum, average

and variance). As well as the following heuristics: hadd,
hmax (Bonet and Geffner 2001), Context enhanced ad-
ditive (Helmert and Geffner 2008), hFF (Hoffmann and
Nebel 2011), Goal count (i.e., the number of unsatisfied
goals), Landmark count (Richter, Helmert, and Westphal
2008) and Landmark cut (Helmert and Domshlak 2009) .

Modelling the Data
One of the most important steps in this system is learn-
ing classification models to predict whether a planner will
find a solution for a problem. We trained with 25 classi-
fication algorithms (for different model types: trees, rules,
support vector machines and instance based learning) using
WEKA (Witten and Frank 2005). WEKA is a data mining
toolkit that provides a standard format for running machine
learning algorithms. We selected the model with best accu-
racy (99.83% in training phase): Random Forest (Breiman
2001). This model is a combination of tree predictors such
that each tree depends on the values of a random vector and
with the same distribution.

In addition, we include two strategies to compare the per-
formance of the system. The first one selects planners only
with the Pareto efficiency, and the other uses in addition the
classification model.

Deployment
In this section, we explain the different configurations of
the system in the different tracks (sequential satisficing, se-
quential agile and sequential multi-core). The summary is
reported in Table 1.

Sequential Satisficing Planner
The IBaCoP planner uses the 12 planners described in sub-
section Selected Planners, which are selected by the Pareto
efficiency analysis. The execution order of the planners is ar-
bitrary, since time is divided uniformly among all them (150
seconds per planner).

The IBaCoP2 planner uses the learned model described in
section Modelling the Data . It selects the 5 planners with the
highest confidence of solving the problem. The execution or-
der of the planners is based on their confidence. The running
time is assigned uniformly to each planner (360 seconds).

Sequential Agile Planner
As in the Sequential Satisficing track, the IBaCoP planner
uses the 12 planners described in subsection Selected Plan-
ners. However, we assigned as running time the average time
to find the first solution in 300 seconds. The execution or-
der for the planners is given by this average from less time
to greater values. Even though all planners are included, in
practice, only a few of them will have the chance to run, until
consuming the time bound of 300 seconds.

The IBaCoP2 planner uses the learned model to select 5
planners; the order of the planners is decided from the con-
fidence and the time for each planner is the same for the five
planners.



Sequential Multi-core Planner
For Multi-core track, the planners are the same as for the
sequential satisficing track, but taking into account that we
have more time (1800 seconds × 4 cores). Memory is di-
vided equally among all the planners running in the different
cores.

Planner seq-sat seq-agl seq-mco
1 yahsp2-mt 150 5 600
2 randward 150 50 600
3 arvand 150 55 600
4 fd-autotune-1 150 50 600
5 lama-2008 150 45 600
6 probe 150 – 600
7 madagascar 150 45 600
8 lpg-td 150 50 600
9 fdss-1 150 – 600

10 lama-2011 150 – 600
11 fd-autotune-2 150 – 600
12 fdss-2 150 – 600

Table 1: Time for each planner execution in sequential tracks
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