Mining IPC-2011 Results

Isabel Cenamor Tomás de la Rosa Fernando Fernández

June 25, 2012

- Introduction
 - Motivation
 - Target
- 2 Mining Process
 - General Description
 - Data Undestanding
 - Features Description
 - Data Preparation
 - Data Modeling
 - Evaluation Set Up
- Results
 - Classification Results
 - Regression Result
 - Planners
- 4 Conclusions and Future Work

• Each competition (IPC) produces a big amount of data

- Each competition (IPC) produces a big amount of data
- This data opens a wide variety of analysis from a Data Mining perspective

- Each competition (IPC) produces a big amount of data
- This data opens a wide variety of analysis from a Data Mining perspective
- The results of the analysis can help us to find some insights about the performance of the planners

- Each competition (IPC) produces a big amount of data
- This data opens a wide variety of analysis from a Data Mining perspective
- The results of the analysis can help us to find some insights about the performance of the planners
- And can be used to configure a portfolio of planners that takes into account the particular features of a planning problem

Target

- It is posible to generate a model that predicts:
 - If a planner will be able to find a solution
 - How long it will take

General Description

Data Understanding

We have used all the problems from the Sequential Satisficing and Sequential Optimization tracks:

- Processing PDDL to SAS+
- Extraction of features from the problems
- Extraction of the results of the last competition
- Oata Integration.

Features

The features have two different sources:

- The IPC 2011 Results
- 2 The IPC 2011 Domains and Problems

Total Instances

- Seq-sat has 7560 instances: 27 planners with 20 problems in 14 domains (3837 solved / 3723 unsolved)
- Seq-opt has 3360 instances: 12 planners with 20 problems in 14 domains (1831 solved / 1529 unsolved)

The IPC 2011 Results

These features are a subset of the elementary variables offered by the software of the IPC:

- Planner
- Omain
- Problem
- Time vector (CPU time of each solution found)
- Quality vector (Plan quality of each solution found)

The IPC 2011 Domains and Problems

The objective of this process is the characterization of the problem. These features are divided in:

- Basic: based on PDDL
- 2 Elaborated: based on SAS+

The size of the set of features extracted is 47.

Elaborated Features

Based on SAS+:

- Based on Causal Graph (CG)
 - General(4)
 - General Ratios (4)
 - High Level Statistics Information (6)
 - Topology Statistics Information(12)
- Based on Transition Graph (DTG)
 - General (3)
 - Topology Statistics Information (12)

Data Preparation

With the data set created in the previous step:

- We estimate output attributes:
 - Solution
 - Time of first solution
 - Quality of first solution
 - Time of median solution
 - Quality of median solution
 - Time of best solution
 - Quality of best solution
- Automatic Selection of Features

Data Modeling

Figure: Data Modeling

Different sets based on the prediction variable:

- Olassification → Solution?
- 2 Regression:
 - Time of the first solution
 - Median time of the solutions
 - Execution time of the best solution

Algorithms

We used Weka Software in the modeling process:

- Classification
 - Decision Tree (J48)
 - Support Vector Machine (SMO)
 - Instance Based Learning Algorithm (IBK)
- Regression
 - Regression Rules (M5Rules)
 - Support Vector Machine (SMO)
 - Instance Based Learning Algorithm (IBK)

Metric Used

• Accuracy =
$$(\frac{number\ TP + number\ TN}{Total})$$

• RelativeError = $\frac{Absolute\ Error}{Real\ Value}$

Using data from the competition we have taken the classes for the models

• Is the estimation valid for new problems in the same domains seen in the IPC 2011?

Using data from the competition we have taken the classes for the models

- Is the estimation valid for new problems in the same domains seen in the IPC 2011?
- Yes , with Cross Validation

Using data from the competition we have taken the classes for the models

- Is the estimation valid for new problems in the same domains seen in the IPC 2011?
- Yes , with Cross Validation
- Is the estimation valid for new problems in domains differents to the IPC 2011 ones?

Using data from the competition we have taken the classes for the models

- Is the estimation valid for new problems in the same domains seen in the IPC 2011?
- Yes , with Cross Validation
- Is the estimation valid for new problems in domains differents to the IPC 2011 ones?
- Yes, with Leave one domain out

Cross Validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.

Figure: Cross Validation I

Figure: Cross Validation II

Figure: Cross Validation III

The error is the mean of the evaluations

Figure: Cross Validation IV

This is the same as a K-fold cross-validation with K being equal to the number of observations in the original sample. (Domains)

Figure: Leave - one - domain - out I

Figure: Leave - one - domain - out II

Figure: Leave - one - domain - out III

The error is the mean of the evaluations

Figure: Leave - one - domain - out IV

Seq-sat Classification

Dataset	Cross Validation	Leave Domain Out
J48	88.75(1.05)	59.14(12.13)
IBk -K 1	88.67(1.29)	60.83(10.13)
IBk -K 3	87.63(1.07)	60.58(11.76)
IBk -K 5	88.58(1.07)	61.95(11.10)
SMO	72.48(1.58)	61.34(10.10)

Seq-opt Classification

Dataset	Cross Validation	Leave Domain Out
J48	90.14(1.58)	60.36 (23.69)
IBk -K 1	86.96(1.57)	60.36 (21.26)
IBk -K 3	87.81(1.81)	58.78 (21.66)
IBk -K 5	83.91(1.90)	60.86 (20.53)
SMO	79.96(2.30)	67.41 (16.55)

Seq-sat Regression(I)

Dataset	Cross Validation		
	First Time	Median Time	Best Time
M5Rules	73.81(4.78)	74.02(3.90)	73.66(3.61)
IBk -K 1	59.84(5.15)	65.25(5.28)	67.57(4.07)
IBk -K 3	55.05(3.72)	60.02(4.00)	62.98(3.12)
IBk -K 5	56.61(3.66)	60.93(3.51)	64.39(3.00)
SMOreg	60.18(4.06)	64.08(3.65)	69.50(2.87)

Seq-sat Regression(II)

Dataset	Leave Domain Out		
	First Time	Median Time	Best Time
M5Rules	17204.81(60518.16)	1492.24(2798.89)	985.64(2200.93)
IBk -K 1	87.94(30.76)	91.12(29.39)	93.66(23.38)
IBk -K 3	79.31(28.27)	89.87(31.70)	85.96(22.26)
IBk -K 5	92.12(29.73)	89.70(26.57)	85.57(19.21)
SMOreg	835.17(2264.22)	184.10(165.75)	907.32(2620.74)

Seq-opt Regression

Dataset	Cross Validation	Leave Domain Out
M5Rules	67.08(7.63)	213.87 (231.95)
IBk -K 1	59.74(8.37)	141.54 (47.40)
IBk -K 3	59.99(6.32)	123.37 (11.26)
IBk -K 5	63.59(6.38)	127.21 (10.96)
SMOreg	66.84(5.71)	15151.04 (54178.83)

Different classification accuracies achieved with individual models

PI	Accuracy	
Lama-2008		81,43 ±6,35
Lamar		81,43 ±5,71
Satplanlm-c		86,79±5,99
Forkuniform		88,93±3,73
Cpt4		92,5±4,36
Minimum	Fd-autotune2	78,2
Maximum	Acoplan, Acoplan2	97,5
Average	_	$88,5 \pm 5,3$
Track Winner	Lama-2011	81,4

• In this analysis we have given some insights about the performance of planners

- In this analysis we have given some insights about the performance of planners
- We have created classification models for predicting whether a planner will succeed or not in a given problem

- In this analysis we have given some insights about the performance of planners
- We have created classification models for predicting whether a planner will succeed or not in a given problem
- And we have created regression models for predicting the time a planner will need to solve the problem

 The leave one doamin out evaluation is an alternative to estimate how good the learned models in unknown domain

- The leave one doamin out evaluation is an alternative to estimate how good the learned models in unknown domain
- The results on known domains have a good accuracy

- The leave one doamin out evaluation is an alternative to estimate how good the learned models in unknown domain
- The results on known domains have a good accuracy
- But it seems that this does not hold in unknown domains

- The leave one doamin out evaluation is an alternative to estimate how good the learned models in unknown domain
- The results on known domains have a good accuracy
- But it seems that this does not hold in unknown domains
- The results have shown that the elaborated features are relevant for partially characterizing the complexity of planning problems

Future Work

 Creating new feature to improve the results in regression models

Future Work

- Creating new feature to improve the results in regression models
- Developing a portfolio of planner with the created models