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Motivation

Motivation

Each competition (IPC) produces a big amount of data

This data opens a wide variety of analysis from a Data Mining
perspective

The results of the analysis can help us to find some insights
about the performance of the planners

And can be used to configure a portfolio of planners that takes
into account the particular features of a planning problem
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Introduction

Target

Target

It is posible to generate a model that predicts:

If a planner will be able to find a solution
How long it will take
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General Description
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Mining Process

Data Undestanding

Data Understanding

We have used all the problems from
the Sequential Satisficing and
Sequential Optimization tracks:

1 Processing PDDL to SAS+

2 Extraction of features from the
problems

3 Extraction of the results of the
last competition

4 Data Integration.
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Mining Process

Features Description

Features

The features have two different sources:

1 The IPC 2011 Results

2 The IPC 2011 Domains and Problems

Total Instances

Seq-sat has 7560 instances: 27 planners with 20 problems in 14
domains (3837 solved / 3723 unsolved)

Seq-opt has 3360 instances: 12 planners with 20 problems in 14
domains (1831 solved / 1529 unsolved)
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Mining Process

Features Description

The IPC 2011 Results

These features are a subset of the elementary variables offered by
the software of the IPC:

1 Planner

2 Domain

3 Problem

4 Time vector (CPU time of each solution found)

5 Quality vector (Plan quality of each solution found)
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Mining Process

Features Description

The IPC 2011 Domains and Problems

The objective of this process is the characterization of the problem.
These features are divided in:

1 Basic: based on PDDL

2 Elaborated: based on SAS+

The size of the set of features extracted is 47.
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Mining Process

Features Description

Elaborated Features

Based on SAS+:

Based on Causal Graph (CG)

General(4)
General Ratios (4)
High Level Statistics Information (6)
Topology Statistics Information(12)

Based on Transition Graph (DTG)

General (3)
Topology Statistics Information (12)
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Mining Process

Data Preparation

Data Preparation

With the data set created in the
previous step:

1 We estimate output attributes:

Solution
Time of first solution
Quality of first solution
Time of median solution
Quality of median solution
Time of best solution
Quality of best solution

2 Automatic Selection of Features
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Mining Process

Data Modeling

Data Modeling

Figure: Data Modeling

Different sets based on the prediction
variable:

1 Classification −→ Solution?
2 Regression:

Time of the first solution
Median time of the solutions
Execution time of the best
solution
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Mining Process

Evaluation Set-Up

Algorithms

We used Weka Software in the modeling process:

Classification

Decision Tree (J48)
Support Vector Machine (SMO)
Instance Based Learning Algorithm (IBK)

Regression

Regression Rules (M5Rules)
Support Vector Machine (SMO)
Instance Based Learning Algorithm (IBK)
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Mining Process

Evaluation Set-Up

Metric Used

Accuracy = (
number TP + number TN

Total
)

RelativeError =
Absolute Error

Real Value
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Mining Process

Evaluation Set-Up

Model evaluation

Using data from the competition we have taken the classes for the
models

Is the estimation valid for new problems in the same domains
seen in the IPC 2011?

Yes , with Cross Validation

Is the estimation valid for new problems in domains differents
to the IPC 2011 ones?

Yes, with Leave - one - domain - out
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Mining Process

Evaluation Set-Up

Cross Validation

Cross Validation is a technique for assessing how the results of a
statistical analysis will generalize to an independent data set.

Figure: Cross Validation I
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Mining Process

Evaluation Set-Up

Cross Validation

Figure: Cross Validation II
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Mining Process

Evaluation Set-Up

Cross Validation

Figure: Cross Validation III
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Mining Process

Evaluation Set-Up

Cross Validation

The error is the mean of the evaluations

Figure: Cross Validation IV
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Mining Process

Evaluation Set-Up

Leave - one - domain - out

This is the same as a K-fold cross-validation with K being equal to
the number of observations in the original sample. (Domains)

Figure: Leave - one - domain - out I
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Mining Process

Evaluation Set-Up

Leave - one - domain - out

Figure: Leave - one - domain - out II
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Mining Process

Evaluation Set-Up

Leave - one - domain - out

Figure: Leave - one - domain - out III
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Mining Process

Evaluation Set-Up

Leave - one - domain - out

The error is the mean of the evaluations

Figure: Leave - one - domain - out IV
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Results

Classification Results

Seq-sat Classification

Dataset Cross Validation Leave Domain Out

J48 88.75(1.05) 59.14(12.13)

IBk -K 1 88.67(1.29) 60.83(10.13)

IBk -K 3 87.63(1.07) 60.58(11.76)

IBk -K 5 88.58(1.07) 61.95(11.10)
SMO 72.48(1.58) 61.34(10.10)
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Results

Classification Results

Seq-opt Classification

Dataset Cross Validation Leave Domain Out

J48 90.14(1.58) 60.36 (23.69)

IBk -K 1 86.96(1.57) 60.36 (21.26)

IBk -K 3 87.81(1.81) 58.78 (21.66)

IBk -K 5 83.91(1.90) 60.86 (20.53)

SMO 79.96(2.30) 67.41 (16.55)
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Results

Regression Result

Seq-sat Regression(I)

Dataset Cross Validation

First Time Median Time Best Time

M5Rules 73.81(4.78) 74.02(3.90) 73.66(3.61)

IBk -K 1 59.84(5.15) 65.25(5.28) 67.57(4.07)

IBk -K 3 55.05(3.72) 60.02(4.00) 62.98(3.12)
IBk -K 5 56.61(3.66) 60.93(3.51) 64.39(3.00)

SMOreg 60.18(4.06) 64.08(3.65) 69.50(2.87)
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Results

Regression Result

Seq-sat Regression(II)

Dataset Leave Domain Out
First Time Median Time Best Time

M5Rules 17204.81(60518.16) 1492.24(2798.89) 985.64(2200.93)
IBk -K 1 87.94(30.76) 91.12(29.39) 93.66(23.38)
IBk -K 3 79.31(28.27) 89.87(31.70) 85.96(22.26)
IBk -K 5 92.12(29.73) 89.70(26.57) 85.57(19.21)
SMOreg 835.17(2264.22) 184.10(165.75) 907.32(2620.74)
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Results

Regression Result

Seq-opt Regression

Dataset Cross Validation Leave Domain Out

M5Rules 67.08(7.63) 213.87 (231.95)

IBk -K 1 59.74(8.37) 141.54 (47.40)

IBk -K 3 59.99(6.32) 123.37 (11.26)
IBk -K 5 63.59(6.38) 127.21 (10.96)

SMOreg 66.84(5.71) 15151.04 (54178.83)
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Results

Planners

Different classification accuracies achieved with
individual models

Planners Accuracy

Lama-2008 81,43 ±6,35

Lamar 81,43 ±5,71

Satplanlm-c 86,79±5,99

Forkuniform 88,93±3,73

Cpt4 92,5±4,36

Minimum Fd-autotune2 78,2

Maximum Acoplan, Acoplan2 97,5

Average – 88,5 ± 5,3

Track Winner Lama-2011 81,4
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Conclusions

In this analysis we have given some insights about the
performance of planners

We have created classification models for predicting whether a
planner will succeed or not in a given problem

And we have created regression models for predicting the time
a planner will need to solve the problem
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Conclusions

The leave one doamin out evaluation is an alternative to
estimate how good the learned models in unknown domain

The results on known domains have a good accuracy

But it seems that this does not hold in unknown domains

The results have shown that the elaborated features are
relevant for partially characterizing the complexity of planning
problems
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Future Work

Creating new feature to improve the results in regression
models

Developing a portfolio of planner with the created models
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