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Abstract

In this document we describe the techniques used to
configure NuCeLaR, a sequential portfolio submitted
and adapted to the three deterministic sequential tracks
of the International Planning Competition 2014: se-
quential optimal, sequential satisficing and sequential
multi-core. This portfolio has been configured using
the combination of Machine Learning techniques and
Mixed-Integer Programming.

Introduction
Since none of the existing planners dominates all others in
every domains, the combination of some of them intuitively
should improve their performance. Different approaches to
combine existing planners have been proposed; i.e. using
different components of different planners during the same
search. Specifically, the combination of several planners in-
dependently executed in sequence with short timeouts are
usually named portfolios. Works like (Helmert, Röger, and
Karpas 2011; Gerevini, Saetti, and Vallati 2009) have shown
that portfolios are a useful approach, since they achieved
quite successful results in the previous International Plan-
ning Competitions (IPCs).

In this work, we apply a new strategy to combine exist-
ing planners using a portfolio approach: we configure a se-
quential portfolio for each kind of problem. To determine
these kinds of problems, we apply machine learning to a set
of planning problems from past IPCs. Particularly, we split
these training problems in different groups using clustering
techniques. These techniques are applied over a set of prob-
lem features extracted from the training problems. Once the
set of training problems is split into different subsets (clus-
ters), we compute a different portfolio configuration for each
subset using a technique based on Mixed-Integer Program-
ming (MIP) (Núñez, Borrajo, and Linares López 2012). Fi-
nally, we analyze the features of the problem to be solved
and we run the corresponding portfolio configuration.

Figure 1 shows the two phases of the system: learning
and deployment. The learning phase is also subdivided in
two steps: clustering and portfolio generation.

The next sections describe in more detail both phases and
provide specific information about the planners in the differ-
ent tracks.
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Figure 1: General System Diagram

Clustering Phase
The goal of data clustering (Jain 2010), also known as clus-
ter analysis, is to discover the natural grouping of a set of
patterns or points. Thus, this statistical classification tech-
nique determines whether the individuals of a population fall
into a group or another by making quantitative comparisons
of multiple characteristics. An operational definition of clus-
tering can be defined as a representation of n objects, where
the objective is to find k groups based on a measure of sim-
ilarity. The similarities between instances that belong to the
same group are high while the similarities between instances
in different groups are low.

This methodology has fundamental challenges associ-
ated (Jain and Dubes 1988). The most relevant to achieve
our objective are the feature selection, the data normaliza-
tion, the number of clusters and whether the discovered clus-
ters and partitions are valid for a portfolio configuration.
We define an appropriate characterization of instances to
find good solutions based in previous works (Roberts and
Howe 2009; Cenamor, de la Rosa, and Fernández 2012;
Virseda, Borrajo, and Alcázar 2013) and we evaluate them
to obtain the best combination of features.

Therefore, we split the initial set of problems in several
sub-groups using the selected features. However, the key is



to know how many groups is the best choice. To do that, we
configure the corresponding portfolio for each possible num-
ber of clusters (within a range) and select the best one in or-
der to find the best performance. Consequently, the selected
k value is the one that solves more problems and achieves
the best quality in the evaluation phase.

Portfolio Generator
The portfolio configuration for each cluster has been gen-
erated using MIP (Wolsey 2008), which computes the port-
folio with the best achievable performance with respect to
a selection of training planning tasks (Núñez, Borrajo, and
Linares López 2012). The resulting portfolio configuration
is a linear combination of candidate planners defined as a
sorted set of pairs <planner, time>. The MIP model con-
siders an objective function that maximizes a weighted sum
of different parameters including: overall running time and
quality.

Since the MIP model takes into account two different cri-
teria (time and quality), it could be viewed and solved as
a multi-objective maximization problem. Instead, we solve
two MIP tasks in sequence while preserving the cost of the
objective function from the solution of the first MIP. Specif-
ically, we first run the MIP task to optimize only quality
—i. e., sum of the plan quality of each solved problem for
the satisficing track and the total number of solved planning
tasks for the optimal track. If a solution exists, then a second
execution of the MIP model is performed to find the combi-
nation of candidate planners that achieves the same quality
(denoted as Q) while minimizing the overall running time.
To enforce a solution with the same quality an additional
constraint is added:

∑n
i=0 qualityi ≥ Q − ε, where ε is

just any small real value used to avoid floating-point errors.
Clearly, a solution is guaranteed to exist here, since a first so-
lution was already found in the previous step. Algorithm 1
shows the steps followed to generate all the submitted port-
folios where quality was maximized first, and then running
time was minimized among the combinations that achieved
the optimal quality. In our experiments, ε = 0.001.

Algorithm 1 Build a portfolio optimizing quality and time
set weights to optimize only quality
portfolio1 := solve the MIP task
Q := the resulting value of the objective function
if a solution exists then

add constraint
∑n

i=0 qualityi ≥ Q− 0.001
set weights to optimize only overall running time
portfolio2 := solve the MIP task
return portfolio2

else
exit with no solution

end if

Implementation of the Portfolio
Every submitted portfolio runs a fixed portfolio configura-
tion for each problem to be solved. However, the runtime

assigned to each component planner can change in unex-
pected ways during its execution when the component plan-
ner finishes prematurely: planner bugs, terminating cleanly
without solving the instance, running out of memory, etc.
Therefore, the total runtime of the executed portfolio can be
lower than the available time. In this case, the submitted
portfolio will run a default planner using the remaining time
(RT). This default planner is picked up among the set of can-
didate planners which had a remarkable performance in the
IPC 2011.

Sequential Optimization Track
In the design of NUCELAR, we have used all the problems
defined in the optimal track of the IPC 2011. Also, we con-
sidered all the participant planners in that competition but
FORKINIT, IFORKINIT and LMFORK because the organiz-
ers of the IPC 2014 had problems with the license of the
Mosek LP solver 1. Since the set of candidate planners was
too small, we discarded the participant portfolios and added
their component planners instead. Moreover, we included
all the planners considered in the design of FDSS (Helmert,
Röger, and Karpas 2011).

Table 1 shows the configuration of the NUCELAR portfo-
lio for the sequential optimization track. This configuration
is composed of six portfolio configurations in turn, one for
each cluster, since we defined six clusters in the clustering
phase. The execution sequence of the component planners
has been sorted by increasing order of the allotted time.

Planner Allotted time (s)
GAMER 1800
CPT4 550
RHW LANDMARKS 598
M&S-BISIM 1 652
FD AUTOTUNE 191
M&S-BISIM 2 326
GAMER 1282
LM-CUT 105
M&S-BISIM 1 188
M&S-BISIM 2 220
GAMER 1237
SELMAX 1800
CPT4 131
M&S-BISIM 2 331
hmax LANDMARKS 1356
SELMAX RT

Table 1: Configuration of NUCELAR for the sequential op-
timization track.

Sequential Satisficing Track
NUCELAR for the satisficing track has been configured ap-
plying our technique over all the satisficing planning tasks

1MOSEK is a tool for solving mathematical optimization prob-
lems. http://mosek.com/



defined for the IPC 2011. Also, we have used all the partici-
pant planners in that competition and the component solvers
of the participant portfolios. Moreover, we included all
the planners considered in the design of FDSS. The FDSS
planners are defined by a search algorithm, an evaluation
method and a set of heuristics. Specifically, FDSS only con-
sidered weighted-A∗ w=3 (WA∗) and greedy best-first search
(GBFS), with EAGER (standard) and LAZY (deferred evalu-
ation) variants of both search algorithms. Also, only four
heuristics were considered: Additive heuristic ADD (Bonet
and Geffner 2001), FF/additive heuristic FF (Hoffmann and
Nebel 2001; Keyder and Geffner 2008), Causal Graph
heuristic CG (Helmert 2004), and Context-Enhanced Addi-
tive heuristic CEA (Helmert and Geffner 2008).

The resulting portfolio is shown in Table 2, which con-
tains one portfolio configuration for each one of the six clus-
ters defined in the cluster analysis.

Planner Allotted time (s)
YAHSP2 MT 2
LAMA 2011 3
FD AUTOTUNE 2 4
MADAGASCAR P 5
FD AUTOTUNE 1 5
YAHSP2 6
DAE YAHSP 27
ROAMER 30
GBFS - EAGER - FF, CG 78
GBFS - EAGER - CG 109
GBFS - LAZY - CG 116
WA∗ - LAZY - CG 227
PROBE 339
ARVAND 849
LAMA 2011 218
GBFS - LAZY - FF, CG 295
GBFS - LAZY - ADD, FF 1287
WA∗ - LAZY - FF 1800
FD AUTOTUNE 2 762
RANDWARD 1037
YAHSP2 5
YAHSP2 MT 5
FDSS 2 48
LAMA 2008 73
GBFS - EAGER - CG 142
FD AUTOTUNE 2 280
LAMA 2011 432
FORKUNIFORM 813
LAMAR 47
WA∗ - LAZY - FF 91
FDSS 1 1660
ROAMER RT

Table 2: Configuration of NUCELAR for the sequential sat-
isficing track.

Sequential Multi-Core Track
The NUCELAR portfolio for the multi-core track has been
configured using the same training data (candidate planners
and training planning tasks) and the same technique (adding
the concept of core processor to the MIP model) used to
configure the sequential satisficing portfolio.

The resulting portfolio is shown in Table 3, which is com-
posed of six portfolio configurations since we defined six
clusters in the clustering phase. Each portfolio configura-
tion uses the four cores available and respects the wall-clock
time limit defined in the competition.

Planner Allotted Time (s)
PROBE 1356
ARVAND 1800
YAHSP2 MT 8
LAMA 2011 12
FD AUTOTUNE 2 16
MADAGASCAR P 20
FD AUTOTUNE 1 20
YAHSP2 24
DAE YAHSP 108
ROAMER 120
GBFS - EAGER - FF, CG 312
GBFS - EAGER - CG 436
GBFS - LAZY - CG 464
WA∗ - LAZY - CG 908
LAMA 2011 1800
GBFS - LAZY - FF, CG 1800
GBFS - LAZY - ADD, FF 1800
PROBE 1800
WA∗ - LAZY - FF 1800
PROBE 1800
LAMA 2011 1800
ARVAND 1800
FD AUTOTUNE 2 1800
RANDWARD 1800
PROBE 1800
LAMA 2011 1800
FORKUNIFORM 1800
LAMA 2011 1728
YAHSP2 20
YAHSP2 MT 20
FDSS 2 192
LAMA 2008 292
GBFS - EAGER - CG 142
FD AUTOTUNE 2 1120
LAMAR 1800
WA∗ - LAZY - FF 1800
FDSS 1 1800
PROBE 1800
LAMAR RT
LAMA 2011 RT

Table 3: Configuration of the NUCELAR portfolio for the
multi-core track.
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