
Mining IPC-2011 Results

Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
icenamor@inf.uc3m.es,trosa@inf.uc3m.es, ffernand@inf.uc3m.es

Abstract

The International Planning Competition (IPC) offers a won-
derful scope to evaluate and compare different planning ap-
proaches and specific planner implementations in benchmark
domains. In IPC 2011, the software generated for the com-
petition permits to obtain a lot of data about the execution of
all the planners in the different tracks in a simple way, which
permits its recovery and use. In this work, we propose to ana-
lyze such data from a Data Mining (DM) perspective, includ-
ing additional features which can be useful for the analysis.
In such a way, we are able to construct models of the results
obtained, allowing us to make additional analysis to the ones
performed by the organizers. In this work, we report some
initial analysis after constructing classification and regression
models for the sequential satisficing and optimal track.

Introduction
Since 1998, the International Planning Competition (IPC)
has offered the opportunity to researchers in Automated
Planning to evaluate and compare their ideas about how to
develop better and faster planners. Each competition pro-
duces a big amount of data specially from the execution of
the planners in the different tracks, domains and problems.
This fact is remarkable in the last two IPC, where the number
of participants and the number of evaluated domains have
increased considerably. Additionally in IPC 2011, the exe-
cution of a planner for a planning problem reported a total of
33 features, including runtime, number of solutions found,
the moment where each solution was obtained, or the qual-
ity of those solutions. Such an amount of data opens a wide
variety of analysis and studies from a Data Mining (DM)
perspective. For instance, one would think whether it is pos-
sible to generate a model that predicts if a planner will be
able to find a solution for a given problem and, if so, with
what probability or how long it will take. The results of the
prediction can help us to find some insights about the per-
formance of planners or can be used to configure a portfolio
of planners that takes into account the particular features of
a planning problem.

In this work we perform an initial analysis of the IPC 2011
data. We follow a classical data mining methodology as it
is introduced in the following section, which describes the
DM process using a data workflow. The following sections
explains the main steps deeply: the pre-process of the data,

including feature generation, extraction and instance selec-
tion; then, the different data models generated, its evaluation
and analysis. Later, some related works are summarized,
while the last section describes our main conclusions and
future research lines.

Data Mining Workflow of the IPC 2011
Results

Data Mining is a process of discovering implicit knowledge
from data. Such process may contain different phases de-
pending on the goals, data sources and tools. Figure 1 shows
the complete process performed in this work. We have fol-
lowed the phases described in the CRISP-DM methodol-
ogy (Chapman et al. 2000): data understanding, data prepa-
ration, modeling, evaluation and deployment. 1

In addition to previous phases, CRISP-DM starts with a
business understanding phase, which is very related to busi-
ness intelligence approaches, where the organization where
the data mining process is going to be performed is ana-
lyzed to generate the data mining goals. In our case, we
have defined the data mining goals as the creation of predic-
tive models that predict, on the one hand, whether a planner
will be able to solve a problem, and if so, what will be the
time required to compute a plan. The first problem is a clas-
sification task, where the predicted attribute has only two
possible values: {true, false}. The second problem is a re-
gression task, where the output belongs to the positive real
numbers, but restricted to the time limit given to the plan-
ners (i.e., 1800 seconds). The reason why we have chosen
these two tasks is two-fold. On the one hand, we want to
characterize under which conditions a planner will succeed,
so this characterization will support a better knowledge of
the planners and their possible improvements. On the other
hand, and from a more engineering point of view, we want
to obtain predictive models that can be used for the selection
of planners when configuring a portfolio-based planner.

Given those goals, the data source of the process is the
SVN repository of the IPC 2011. From this repository we
downloaded the domain and problem files in PDDL, and the
competition results using the IPCReport tool. From the do-
main and problem files, we get the features of each instance

1In this work we do not study in deep methodological aspects,
so any other methodology could be used for the description.



and compute additional features we think will serve for a
better modeling. Once we have the features, the data is inte-
grated, generating a first training set. This data suffers new
transformations (feature generation and selection, and in-
stance selection) depending on the requirements of the mod-
els to build. Afterwards, the models are learned using ma-
chine learning techniques and then evaluated using a suitable
evaluation scheme for estimating the prediction capabilities
of the models. In a real world scenario the methodology
also includes a deployment phase, but we have not consider
it for this work. The next sections describe in depth all these
phases.

IPC 2011
SVN

Repository

2011
Dataset
Results

IPC 2011
Problems 

And
 Domains

(PDDL)

PDDL 
TO

 SAS+

SAS+
Problems

Feature 
Generation

Training 
Data

Training 
Data

DATA
PREPARATION

Predictive
 model

Predictive
 model

MODELING

EVALUATION

Can a planner 
solve a problem?

What is the
time of the best
plan obtained by
a planner in a given
problem?

IPC 2011
Reporting

Feature 
Extraction

DATA 
UNDERSTANDING

Problem
And 

Domain
Features

Data
Integration

Training 
Data

DEPLOYMENT

1. Can a planner 
solve a problem?

2. What is the
time of the best
plan obtained by
a planner in a given
problem?

BUSINESS
UNDERSTANDING

Feature 
Selection

Feature 
Selection

Instance
Selection

Model
Construction
(Regression)

Model
Construction

(Classification)

Figure 1: Data workflow of the mining process following CRISP-
DM methodology

Data Understanding
This first step consists of recognizing the available sources
of data and devising a good way to collect and integrate this
data. For our analysis we have focused on the sequential
satisficing track and the sequential optimal track of the IPC-
2011. In the first one, planners should find a plan within the
time bound. Since the solution does not need to be optimal,
most planners develop the strategy of continuously reporting
a solution that improves a previous one until the time runs
out. In the sequential optimal track, planners should report
a single optimal solution within the time bound.

For both tracks, the input data to the DM process comes
from the competition results and from the domain and prob-
lem files. The competition results are in fairly suitable way
for applying DM because each result for a planner execu-
tion, given a domain and a problem, corresponds to an ex-

ample in terms of machine learning, i.e., a set of features and
the given target attribute. However, this is not the case for
PDDL files, therefore we need to extract some useful fea-
tures from them. In the following sections we describe the
data collected and generated for the mining process.

Features from IPC 2011 results
The IPC-2011 software (López 2011) contains several pack-
ages, which facilitates to test planners, compare their per-
formance and obtain reports of the results. IPCReport is the
package in charge of providing access to the data generated
during the competition. The report is able to present 33 raw
variables and 23 elaborated variables. The raw variables are
the principal observations about the execution of planners
for a given problem and domain. The elaborated variables
are the ones derived from raw data, for example, a maxi-
mum of a set of values in the raw variables. In this work, we
use some of the raw variables, which are described next:

1. Planner: the name of the planner.

2. Domain: the name of the domain.

3. Problem: a problem identifier (the problem number for a
particular domain).

4. Oktimesols: For each validated plan found by the planner,
a vector containing the time elapsed (in seconds) since the
planner was started until such solution was found. This
variable can either be empty (no solution was found), have
a single value or an array of values. We will refer to this
feature as the time vector.

5. Values: A vector containing the plan quality for the found
solutions. The i− th position of vector OKtimesols corre-
sponds to the same plan as i−th position of vector Values.
We will refer to this feature as the quality vector

From the sequential satisficing track we got 7560 in-
stances, corresponding to the execution of 27 planners in a
total of 20 problems for 14 domains. From the the sequen-
tial optimal track we got 3360 instances corresponding to
the execution of 12 planners in a total of 20 problems for 14
domains.

Features extracted from IPC 2011 domains and
problems
The objective of this process is to generate a set of features
that characterize a problem instance. In order to achieve a
good characterization, we will use basic features that can be
extracted from PDDL files and a set of elaborated features
generated from the problem translation to the SAS+ formal-
ism and its induced graphs, i.e., the causal graph and the
domain transition graphs.

The basic features from a problem instance are:

1. Objects: Number of objects defined in the problem.

2. Literals: Number of instantiated predicates in the initial
state.

3. Goals: Number of instantiated predicates that are true in
the final state.



These basic features offer information about the complex-
ity of the problems. In fact, most problem generators re-
ceives as input the number of each type object and the num-
ber of goals, so they can determine the instance size. How-
ever, these basic features and many others that can be ex-
tracted from the domain definition will not be sufficient for
discriminating between instances of the same size. Indeed,
any conceivable set of possible features from the domain,
such as the number of actions, maximum predicate arity,
maximum number of preconditions, in conjunction with the
basic features from the problem, will serve to discriminate
between problems of different domains or problem of the
same domains with different size, but not between problems
having the same object and goal distribution. We argue that
additional information can be extracted from the graphs in-
duced by the SAS+ formalism in order to partially recognize
the differences between problems of similar size.

The SAS+ formalism (Backstrom and Nebel 1995;
Helmert 2009) is an alternative representation for STRIPS.
It considers a set of state variables, each one associated to a
finite set of possible values. Actions have preconditions (i.e.,
required assignments of some variables to the action become
applicable) and effects (i.e., the new values of the affected
state variables). Using this formalism, a problem instance
can be represented in a structured way using two types of
graphs: (1) The causal graph (CG), which is a graph that
captures the causal dependencies between the state variables
of a given problem. (2) The domain transition graph (DTG)
which encodes the allowed transitions between different val-
ues of a variable. In a problem there is a DTG for each state
variable. For more details see (Helmert 2006).

We have used the LAMA planner (Richter and Westphal
2010) pre-process to generate all graphs. We recall that in
the causal graph, the high-level variables are the variables
for which there is defined a value in the goal. Although the
common definition of the causal graph does not consider the
edges as weighted, LAMA computes the edge weights of the
causal graph as the number of instantiated actions that in-
duced each edge. We also consider these weights for com-
puting our features.We have extracted a total of 47 features
for each problem, which are summarized next.

Features from the Causal Graph: For the CG we clas-
sify the generated features in four categories: (1) general,
which includes the direct information from the graph (2) ra-
tios, which represents interesting proportions that may be
equal across problems of different size, (3) statistical, such
as the average or the standard deviation of particular ele-
ments of a graph. (4) high-level statistical, the same as be-
fore but only considering the high-level variables.

• General Features
1. NumberVariablesCG: The number of variables of the

causal graph.
2. High-LevelVariablesCG: The number of high-level

variables.
3. TotalEdgesCG: The number of edges.
4. TotalWeightCG: The sum of weights of the edges.
• CG Ratios

1. VERatio: The ratio between the total number of vari-
ables and the total numbers of edges. This ratio shows
the level of connection in the causal graph.

2. WERatio: The ratio between the sum of the weights
and the number of edges. This ratio shows the average
weight for the edges.

3. WVRatio: The ratio between the sum of the weights
and the number of variables.

4. HVRatio: The ratio between the number of high-level
variables and the total number of variables. This ratio
shows the percentage of variables involved in the prob-
lem goals.

• Statistics of the CG
This statistical information is used to characterize the
structure of the causal graph. We compute the average,
the maximum and the standard deviation of the following
values:

1. InputEdgeCG: The number of incoming edges for each
variable. Thus, we compute the average of input edges
in the CG, the maximum number of input edges for a
single variable and standard deviation of input edges,
for knowing the variation between variables.

2. InputWeightCG: The sum of the weights of the incom-
ing edges for each variable. Thus, we compute three
new features following the same computations as In-
putEdgeCG.

3. OutputEdgeCG: The number of outgoing edges for
each variable. Thus, we compute the average of output
edges in the CG, the maximum number of output edges
for a single variable and standard deviation of output
edges.

4. OutputWeightCG: The sum of the weights of the in-
coming edges for each variable. Thus, we compute
three new features following the same computations as
OutputEdgeCG.

• Statistics of high-level Variables
This information tries to encode the structure for the vari-
ables involved in the problem goals. We compute the av-
erage, the maximum and the standard deviation for the
following values:

1. InputEdgeHV: The number of incoming edges for each
high level variables. This value produces three new fea-
tures following the same computation as InputEdgeCG.

2. InputWeightHV: The edge weight sum of the incom-
ing edges for each high level variables. This value pro-
duces three new features following the same computa-
tion as InputWeightCG.

Features from DTGs: Since the number of DTGs in a
problem is variable, it is difficult to encode general attributes
for each graph. Instead, we can summarize DTGs char-
acteristics aggregating the relevant properties of all graphs.
We compute general aggregated features and some statistics
over all graphs.

• General Aggregated Features



1. NumberVerticesDTG: The sum of the number of ver-
tices of all DTG.

2. TotalEdgesDTG: The sum of the number of edges of all
DTGs.

3. TotalWeightDTG: The sum of the weights of the edges
of all DTGs. The weight of An edge in DTG corre-
sponds to the cost of applying the action that induced
the edge.

• Statistics of DTGs
Considering all DTGs, we compute the average, the max-
imum and the standard deviation of the following values:

1. InputEdgeDTG: The number of incoming edges for a
vertex in a DTG.

2. InputWeightDTG: The sum of the weights of the incom-
ing edges of all vertices.

3. OutputEdgeDTG: The number of outgoing edges for a
vertex in a DTG.

4. OutputWeightDTG: The sum of the weights of the out-
going edges of all vertices.

Data Preparation
Data preparation may contain different phases, that can be
summarized in four: data cleaning and transformation (like
normalizing data), feature generation (generating new fea-
tures from the available ones), feature selection (eliminate
useless features) and instance selection (select a sub-subset
of training instances from the total one).

The main tasks of the data cleaning are the management
of missing values and the identification of outliers. For the
first one, we have not performed any task since we have a
strong confidence on the data. The IPCReport tool gives
a complete and reliable data set and the feature generation
process was computable for all problems used in the compe-
tition. For the second one, we decided to eliminate some out-
liers, mainly data from specific problems in some domains
which generated data very far from the average values. Nev-
ertheless initial evaluations demonstrated that results did not
vary significantly.

Regarding feature generation, we generated a lot of de-
rived features, as explained in previous sections. Although
feature generation is an operation that is typically performed
in this step, we performed it in the data collection and un-
derstanding phase due to implementation reasons, thus while
we extracted the data from the PDDL and SAS+ representa-
tions, we computed also the derived features.

The rest of the data preparation processes are explained
depending on the data-mining task:

• Classification: For this task we create a new attribute
class representing whether a planner was able to solve a
problem. This attribute is set to “yes” if there exists at
least one value in the attribute of the time vector, other-
wise it is set to “no”. Both time and quality vectors are
removed from the dataset since they are no longer of in-
terest. Additionally, the domain name and problem num-
ber are treated as identifiers, therefore they will not be
used for modeling. For this task, we did not perform any

instance selection process, since data was very clean, and
we have a manageable amount of instances. This task will
be the same for the satisficing and optimal track.

• Regression: In this task we draw a distinction for IPC
tracks. For the sequential satisficing track we try to pre-
dict three different values: first-time, representing the ex-
ecution time elapsed when a planner found its first solu-
tion for the problem; best-time representing the execution
time elapsed when a planner found its best solution; and
medium-time, representing the median of the time vector.
When predicting each of these values, the others are re-
moved from the training set. The time and quality vectors
are also removed. In addition, we have eliminated all the
instances where a planner was not able to find a solution,
i.e. where time and quality vectors are missing. In the
sequential optimal track planners give one single time for
finding the optimal solution, therefore the regression task
consists of predicting the single value of the time vector.
As before, we only consider instances where a solution
was found.

Data Modeling and Evaluation
Although Figure 1 presents the data mining process as a
cascade, data preparation, modeling and evaluation are typi-
cally performed many times iteratively until a satisficing so-
lution is found. In addition, different models and learning
algorithms are tested until the “best” one is obtained.

In this work, we have used several algorithms, decision
trees (J48) (Quinlan 1993), decision rules (PART) (Frank
and Witten 1998), Support Vector Machines (SMO) (Cris-
tianini and Shawe-Taylor 2000), and IBK (Witten and Frank
2005) for different values of k. The implementation of these
algorithms is provided by WEKA (Witten and Frank 2005),
and they are used with the pre-defined parameters.

Evaluation Set-up
A question that arises when applying machine learning over
any dataset is how to perform the evaluation process. Eval-
uating over the training set typically produces optimistic es-
timations of performance over future data, since it is easy
that the generated models are over-fitted to the training set.
Therefore, other evaluation mechanisms must be used. A
classical one is cross validation, which is a procedure to es-
timate the performance of a previously learned model over
data which has not been used to train the model. It consists
on dividing the whole data set, D, in k slides, D1, . . . , Dk.
Then, ten models are learned, m1, . . . ,mk, each of them
using nine slices for training, and a tenth slices for test.
Therefore, at the end of the process, we have k evaluations,
e1, . . . , ek, one for each model. The estimated performance
e of the complete model is assumed to be the average of the
ten evaluations. The standard deviation over such average
usually gives information about how uniform the k slices
are. The inductive hypothesis ensures that if the model has
been learned over a large amount of representative data, then
the cross validation will return an accurate estimation. How-
ever, is that true in our case? To answer this question, we
divide it in two different ones:



1. is the estimation valid for new problems in the same do-
mains seen in the IPC 2011?

2. is the estimation valid for new problems in domains dif-
ferent to the IPC 2011 ones?
The answer to the first question depends on whether the

problems used for learning are a representative set of prob-
lems in such domain. Since the IPC goal is to evaluate plan-
ners in different situations, problems are selected to cover
such objective. Therefore, we can expect that a classical
cross-validation is a good estimation. This conclusion would
not be strong enough if the distribution of problems (20 in-
stances per domain in IPC-2011) only covers a small space
of the possible problems.

In the case of the second question, that is equivalent to ask
whether the set of domains is representative of the set of all
the possible domains that can be defined in PDDL. To eval-
uate this issue, we need to modify the evaluation method to
a leave-one-out approach. In classical supervised learning,
a leave-one-out approach is equivalent to a cross validation
where k is set to the size of the data set. This mechanism
estimates how the model will behave in the next example
received. In planning, we are interested in evaluating how
the model will behave in a new domain. Therefore, we can
apply a leave-one-out over domains, instead of on the whole
dataset. Specifically, if we have data from k domains, we
learn k models with the data from k − 1 domains, and eval-
uate all them over the k − th domain. The average of the k
evaluations is the estimation of the performance of the mod-
els in future domains. We call this evaluation process as
leave-one-domain-out. The metrics used are:
• Classification Accuracy is the percentage of instances in

a data set that a classification model correctly classifies
(the ratio between the correctly classified instances and
the total, multiplied by 100). The classification accuracy
can be measured over different data sets (training or test
sets), or estimated through different processes, like split,
cross-validation, or leave-one-out.

• Relative absolute error is the ratio between the absolute
error of a prediction of a model (difference between the
predicted value and the expected one) and the expected
output. Since it is a relative value, it is more indepen-
dent of specific class values than no relative measures.
Opposite to classification where maximum accuracy is
searched, regression is a minimization problem of the pre-
diction error. It also can be computed over different data
sets or estimated through different procedures.

Predicting Planner Success
The goal of this task is to predict whether a planner will
solve a given problem. As described previously, the tar-
get variable belongs to the domain {true, false}, meaning
whether the input planner was able to solve the input prob-
lem in the corresponding domain.

Empirical Results. Tables 1 and 2 show the classification
accuracy and the standard deviation obtained in both evalu-
ation processes for the sequential satisficing and sequential
optimal track respectively. In each row, we show the results

of the different classification algorithms: J48, IBK for dif-
ferent values of k, and SMO.

Dataset Cross Validation Leave one Domain Out
J48 88.75(1.05) 59.14(12.13)
IBk -K 1 88.67(1.29) 60.83(10.13)
IBk -K 3 87.63(1.07) 60.58(11.76)
IBk -K 5 88.58(1.07) 61.95(11.10)
SMO 72.48(1.58) 61.34(10.10)

Table 1: Classification accuracy and standard deviation for pre-
dicting planner success in the sequential satisficing track with cross
validation and leave one domain out evaluation

Dataset Cross Validation Leave one Domain Out
J48 90.14(1.58) 60.36 (23.69)
IBk -K 1 86.96(1.57) 60.36 (21.26)
IBk -K 3 87.81(1.81) 58.78 (21.66)
IBk -K 5 83.91(1.90) 60.86 (20.53)
SMO 79.96(2.30) 67.41 (16.55)

Table 2: Classification accuracy for predicting planner success in
the sequential optimal track with cross validation and leave one
domain out evaluation

Regarding the sequential satisficing track, the cross-
validation results show that the best result is obtained using
decision trees (J48), but IBK obtained fairly similar accu-
racy. These results reveals that we are able to achieve good
classification accuracy in the cases where we are predict-
ing planner success within already seen domains. However,
the results for the leave-one-domain-out evaluation worsen
considerably, showing that it is very difficult to general-
ize in the classification task for new unseen domains. Be-
sides, both evaluation schemes show that we are able to cre-
ate models that are better than a default or random classi-
fier, which would obtain an accuracy of 50.7%. This per-
centage corresponds to the ratio of successful executions in
the track. Concerning the sequential optimal track, algo-
rithms performed similar than in the seq-sat track. As be-
fore, the leave-one-domain-out evaluation got worse results
than cross validation, though the best result (67.4%) was
higher than in seq-sat results.

We also have performed a feature selection process prior
the generation of the models. Nevertheless, the default pa-
rameters produce an aggressive process. As a result, only
one feature was left after the process (i.e., the planner). With
only this feature, generalization is not possible, and the clas-
sification result was very poor (72.06± 1.52) independently
of the algorithm). We have not applied other configuration
or algorithms for feature selection. We postpone this study
to future research.

We performed an additional evaluation to see if we can
predict the performance of some planners better than oth-
ers. For achieving this, we made a separate dataset for each
planner (a total of 27). Then, we built the models with J48
(decision trees) and evaluated them using cross validation.
Table 3 shows the results for the best, the worst and the



average predicted performance. We also include the accu-
racy for the winner, LAMA. As we can see there is consid-
erable gap in the classification accuracy. Another relevant
observation is that it is hard to predict the performance of
a planner based on an algorithm-portfolio, which internally
could behave as different planners. This is the case of the
Fd-autotune-2 which produced the worst model.

planners accuracy
Minimum Fd-autotune2 78,2
Maximum Acoplan, Acoplan2 97,5
Average – 88,5 ± 5,3
Track Winner Lama-2011 81,4

Table 3: Different classification accuracies achieved with individ-
ual models

Semantic Analysis. Here we give a few examples of the
knowledge that we could extract from the models learned.
Specifically, we use the PART algorithm implemented in
WEKA to obtain a set of decision rules that predict whether
a planner will succeed or not. This algorithm firstly creates
a decision tree, from which it generates the set of decision
rules, which are then pruned (simplified). It also includes a
parameter (minNumObj), which sets the minimum number
of instances per rule allowed. This is, therefore, a prune pa-
rameter. If it is low, it permits models with a large number of
rules (maybe sub-optimal due to over-fitting to the training
data), which hence, are more complex to understand for a
human. However, while this value grows, the models gener-
ated contains less rules (maybe sub-optimal due to the lack
of expressiveness). In machine learning, balancing expres-
siveness capability and over-fitting risk is a main issue. Ta-
ble 4 shows the importance of a correct balance. It shows
the prediction capability of the models generated for differ-
ent pruning values over the training set and estimated by
the cross validation. This simple evaluation demonstrates
that reducing pruning capabilities increases expressiveness
(the generated model has more rules), but it over-fits to
training data (difference between training success and cross-
validation estimation is larger). A good balance, in this case,
is a pruning value of 10, which maintains high accuracy
(although significantly worse than the others) without over-
fitting, with only 120 rules.

What is the looking of the rule sets generated? Are they
really informative? The following is the rule at generated
for the pruning parameter set to 1000, which is composed of
only four rules.
Rule 1: NumberVerticesDTG > 168 AND

AND STDInputEdgeHV <= 42.9906

AND AVGInputEdgeDTG > 1.84576

AND TotalEdgesCG > 699: false (2160.0/926.0)

Rule 2: NumberVerticesDTG > 168 AND

AVGInputEdgesDTG > 1.84576: true (2349.0/1024.0)

Rule 3: STDInputEdgeHV <= 55.8043: false (1566.0/560.0)

Rule 4: true (1485.0/459.0)

Pruning pa-
rameter

training
success

cross-
validation
success

number of
rules

1 94.9 88.8± 1.15 287
2 (default) 94.4 88.6± 0.83 233
10 89.9 85.8± 1.41 120
100 78.5 75.7± 1.44 31
1000 60.72 60.3± 1.55 4

Table 4: Different results of PART depending on the pruning pa-
rameter (minimum number of instances per leaf) and the evaluation
mechanism (over training data or estimated with cross-validation
procedure.

The way to read the rules is the following. First, we check
the conditions of the first rule: (NumberV erticesDTG >
168 AND STDInputEdgeHV <= 42.9906 AND
AV GInputEdgeDTG > 1.84576 AND TotalEdgesCG >
699). If the condition is true, the output is false (i.e. the
problem can not be solved). The values (2160.0/926.0)
indicates the number of instances that satisfy the condition
and that belongs to the class ’false’ and ’true’ respectively.
Therefore, those values provide an idea of the coverage and
success of the rule. If an instance does not satisfy Rule
1 condition, Rule 2 is checked, and so on. The last rule
returns a default value in case the input instance does not
satisfy any previous rule.

We want to highlight that this rule set is so reduced that it
does not ask for many of the input features that describe the
instances. It is so reduced that it does not ask for the plan-
ner. However, it already gives information about the prob-
lems, and it seems that to have a number of variables in the
DTG higher or lower than 168 is an important feature of the
problems, since that condition appears in the the initial rules.
In fact, NumberV erticesDTG is a feature that appears in
all the decision trees that PART construct to generate the
rule sets, independently of the pruning parameter. For in-
stance, when the minimum number of instances per leaf is
2, the first question that the decision tree generated makes is
whether NumberV erticesDTG is larger than 106. Then,
it asks for the planner.

For higher expressiveness, we need to reduce pruning ca-
pabilities, and we can try to understand what are the features
that characterize whether a problem will be solved or not.
For instance, this is the rule set that characterize the prob-
lems that LAMA is not able to solve (for a pruning parameter
set to 2):

MAXInputWeightDTG > 3: true (166.0/1.0)

HVRatio > 0.970588 AND

STDInputEdgeCG > 0.026307:true (27.0)

MAXInputWeightHV > 70 AND

AVGInputWeightHV <= 11520: true (37.0/1.0)

WVRatio > 16896: false (9.0)

MAXInputWeightCG <= 6480: true (20.0/1.0)

goals <= 14: false (4.0)

otherwise: false

literals <= 9801 AND

MAXInputWeightHV > 60: true (164.0/2.0)



NumberVariablesCG > 58 AND VERatio > 0.00575 AND

MAXInputEdgeHV <= 8: true (51.0)

Goals <= 50 AND

NumberVerticesDTG > 130 AND NumberVariablesCG > 11 AND

MAXInputEdgeDTG <= 1210: false (22.0)

MAXInputEdgeDTG <= 1397: true (36.0)

: false (7.0/1.0)

Can this rule set help researches to focus the development
or improvement of their planners? That is something that
only them can answer but, at least, these rules can give some
clues, since they characterize the solved and the unsolved
problems. A similar study could be easily performed for any
of the planners of the competition, although we omit them
due to lack of space.

Predicting Execution Time
Once we know whether the input planner will be able to
solve the input problem (using the predictive model learned
in the previous phase), the goal of this task is to predict the
time a planner needs to find the solutions.

Empirical Results. As explained before, in the sequential
satisfying track we have created models for predicting the
time invested in finding the first, the median and the best
solution. The results obtained for this track are shown in
Table 5. We follow the same evaluation scheme of the clas-
sification case. The table shows the relative absolute error
and standard deviation after the validation process. As in
the classification case, results worsen when estimations are
performed with the leave-one-domain-out scheme. Besides,
IBK with different values of K had less degradation of the
estimated errors, showing that this technique could be better
when making predictions on new domains.

Regarding the sequential optimal track, if planners report
a solution, it should be optimal. Therefore, it only make
sense to create a model to predict a time for finding the so-
lution, which is obviously the best one. Table 6 shows the
results for both evaluation schemes. Each value corresponds
to the relative absolute error and the standard deviation after
the evaluation process.

Dataset Cross Validation Leave Domain Out
M5Rules 67.08(7.63) 213.87 (231.95)
IBk -K 1 59.74(8.37) 141.54 (47.40)
IBk -K 3 59.99(6.32) 123.37 (11.26)
IBk -K 5 63.59(6.38) 127.21 (10.96)
SMOreg 66.84(5.71) 15151.04 (54178.83)

Table 6: Relative absolute error (% percentage) and standard de-
viation of predicting the time planners will need to find a solution
in the sequential optimal track

Semantic Analysis. Semantic analysis of regression mod-
els is more complex than for classification, because regres-
sion models include mathematical models difficult to inter-

pret. In our case, we will analyze a few of them. For this
study, we use the algorithm M5Rules, which generate re-
gression rules. Table 7 shows the results of an experimental
process equivalent to the one described in Table 4.

Pruning pa-
rameter

Training
Error

Cross-
validation
Error

Number of
Rules

1 71.26 71.26± 6.82 5
4 (default) 71.26 73.38± 6.82 5
10 66.68 71.63± 3.08 11
100 70.42 71.35± 2.30 11
1000 83.86 77.33± 2.02 4

Table 7: Different results of M5Rules depending on the pruning
parameter and the evaluation mechanism (over training data or es-
timated with cross-validation procedure.

As in the case of classification, we can see that a value
of 10 is a good value for the pruning parameter. However,
in this case, the number of rules generated is not so differ-
ent for different values, as well as the prediction capabili-
ties. Again, we analyze the looking of the rule set generated
for LAMA planner In this case, M5Rules generates only 2
rules, each of them with its linear regression model. From
a semantic point of view, we can think that the regression
models generated could give an idea about the importance
of the features in the prediction model. For instance, in this
case the output value changes a lot with different values of
the V ERatio and MAXInputWeigthDTG features (in rule
1), and with AV GInputEdgeHV , STDInputEdgeCG and
STDOutputEdgeCG (in Rule 2), showing that, for LAMA,
the output time is very sensitive to small differences in those
values. The relative absolute error of that rule set is 78.74%.
Rule: 1

IF STDInputWeigthCG <= 13305.8

MAXInputWeigthDTG <= 4.5

WERatio > 5.52

THEN bestTime =

0.17 * objects

- 0.0764 * goals - 0.0002 * TotalWeigthCG

- 52.7647 * VERatio - 0.0099 * WERatio

- 0.0676 * WVRatio + 0.7708 * AVGInputEgdeHV

- 0.4982 * STDOutputEdgeCG + 0.0043 * STDInputWeigthCG

- 0.0002 * TotalWeigthDTG - 0.0226 * NumberVerticesDTG

+ 0.0015 * TotalEdgesDTG + 0.0703 * STDInputEdgeDTG

+ 0.0314 * MAXOutputEdgeDTG - 8.4912 * MAXInputWeigthDTG

+ 178.6288 [79/44.805%]

Rule: 2

bestTime = 0.0784 * literals + 0.0003 * TotalWeightCG

+ 6.8833 * AVGInputEdgeHV - 0.0053 * STDInputEdgeHV

+ 11.8598 * STDInputEdgeCG - 11.4135 * STDOutputEdgeCG

+ 193.2316 [171/85.323%]

These analysis are only small examples of how power-
ful data-mining studies can be for supporting decisions in
solving planning problems. For instance, one classical deci-
sion in heuristic search based planners is, once a solution is
found, to decide whether to wait for a new solution is inter-
esting or not. To make this decision, to predict the required



Dataset Cross Validation Leave Domain Out
First Time Medium Time Best Time First Time Medium Time Best Time

M5Rules 73.81(4.78) 74.02(3.90) 73.66(3.61) 17204.81(60518.16) 1492.24(2798.89) 985.64(2200.93)
IBk -K 1 59.84(5.15) 65.25(5.28) 67.57(4.07) 87.94(30.76) 91.12(29.39) 93.66(23.38)
IBk -K 3 55.05(3.72) 60.02(4.00) 62.98(3.12) 79.31(28.27) 89.87(31.70) 85.96(22.26)
IBk -K 5 56.61(3.66) 60.93(3.51) 64.39(3.00) 92.12(29.73) 89.70(26.57) 85.57(19.21)
SMOreg 60.18(4.06) 64.08(3.65) 69.50(2.87) 835.17(2264.22) 184.10(165.75) 907.32(2620.74)

Table 5: Relative absolute error (% percentage) and standard deviation of predicting the time planners invested in finding the first, median
and best solution in the sequential satisficing track.

time to obtain the best plan is required. We can predict that
value for LAMA with a mean absolute error of only 217 sec-
onds.

Related Work
The construction of models to predict the performance of
planners is not a novel idea. Roberts and Howe (2009)
showed that model learned from planners’ performance on
known benchmarks up to 2008 get high accuracy when pre-
dicting whether a planner will succeed or not. They use 19
features extracted from the domain and problem definition.
They also proposed to use some features from the causal
graph, but they did not find them relevant for the classifi-
cation task. The main difference with our approach is that
we include features also from the domain transition graphs
and most of our features come from the ground instantiation
of the problem. Additionally, results from both works are
not comparable because they do not have common planners
or instance sets. Besides, they found that domain features
are the more relevant ones, and models are indeed basing
their planner success prediction on implicitly predicting the
domain. This is a good insight regarding the available data;
however, it does not seem a general rule, since one can imag-
ine large planning problems for which any planner will fail
to solve it. We think that models may exploit instance fea-
tures in order to determine the relative hardness between in-
stances of the same domain. To achieve this goal, further
investigation is needed and performance data should be col-
lected from instance sets with more diversity than the one
that could be derived in 20 instance per domain used in the
IPC.

In a more general scope, the prediction of a solver per-
formance is a research topic of interest since it is one of the
techniques for creating algorithm portfolios (Xu et al. 2007;
Gagliolo and Schmidhuber 2006). The idea consists of
learning empirical hardness models based of instance fea-
tures that can be computed efficiently. Then, whenever the
portfolio tries to solve a new instance, the learned models
predict the set of solvers that are likely to solve the in-
stance, so the available time is scheduled between the se-
lected solvers using a criteria based on the prediction con-
fidence. This approach can make a per-instance decision
of which portfolio configurations are likely to perform the
best. However, the successful portfolios in automated plan-
ning (Gerevini, Saetti, and Vallati 2009; Fawcett et al. 2011)
are only able to use the configuration of the best average
performance in a set of training problems. Therefore, given

a new set of instances, these portfolios tries to solve them
using a fixed configuration (i.e., the best over past bench-
marks) or a per-domain configuration, if there is an available
example set of a particular domain. This per-domain deci-
sion for configuring portfolios is the approach followed by
the cited planners in the learning track of the IPC. We argue
that one can use the models presented in this work (or other
similar ones) to create a per-instance configurable planning
portfolio.

Conclusions and Future Work

We have presented an analysis of the IPC-2011 results fol-
lowing a data mining methodology. With this analysis we
have given some insights about the performance of planners,
in addition to the general results reported by the IPC orga-
nizers. We have built classification models for predicting
whether a planner will succeed or not in a given problem,
and regression models for predicting the time a planner will
need to solve the problem.

We have presented the leave-one-domain-out evaluation
scheme. This kind of evaluation is an alternative to the stan-
dard cross-validation if one want to estimate how good the
learned models are, in the situations where problems belong
to an unknown domain. As we have seen in the results, we
can get good classification accuracy when we are dealing
with problems of known domains, but it seems that this does
not hold in unknown domains. We expect that if we repro-
duce the same experiment with more domains, the models
would generalize better.

We have introduced a set of elaborated features that come
from the causal graphs and the domain transition graphs.
The results have shown that these features are relevant for
partially characterizing the complexity of planning prob-
lems. Besides, these features are easy to compute, therefore
they can be extracted in a pre-processing stage of a planning
process, and then used to query a learned model for deciding
the set of planners and the set of times in an instance-based
configurable portfolio. In the near future we plan to continue
our research in this direction.

Acknowledgments

This work was supported by several Spanish projects:
TIN2008-06701-C03-03, TIN2011-27652-C03-02,
TIN2010-08861-E and TRA2009 0080.



References
Backstrom, C., and Nebel, B. 1995. Complexity results for SAS+
planning. Computational Intelligence 11:625–655.
Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.;
Shearer, C.; and Wirth, R. 2000. Crisp-dm 1.0 step-by-step data
mining guide.
Cristianini, N., and Shawe-Taylor, J. 2000. An Introduction to
Support Vector Machines. Cambridge University Press.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Roger, G.; and
Seipp, J. 2011. Fd-autotune: Domain-specific configuration us-
ing fast downward. In Booklet of the 7th International Planning
Competition.
Frank, E., and Witten, I. H. 1998. Generating accurate rule sets
without global optimization. In Proceedings of the Fifteenth In-
ternational Conference on Machine Learnin.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic al-
gorithm portfolios. Annals of Mathematics and Artificial Intelli-
gence, 47 3(4):295–328.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An automatically
configurable portfolio-based planner with macro-actions: PbP. In
Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS-09).
Helmert, M. 2006. The fast downward planning system. JAIR
26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
López, C. L. 2011. The seventh international planning compe-
tition documentation. Technical report, Universidad Carlos III
de Madrid, Madrid, Spain. http://www.plg.inf.uc3m.es/ipc2011-
deterministic/FrontPage/Software.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. JAIR 39:127–177.
Roberts, M., and Howe, A. 2009. Learning from planner perfor-
mance. Artificial Intelligence 173:536–561.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical Ma-
chine Learning Tools and Techniques. 2nd Edition, Morgan Kauf-
mann.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2007.
Satzilla-07: The design and analysis of an algorithm portfolio for
SAT. In Proceedings of the 13th CP Conference.


