

STRATEGIES TO CONFIGURE A PORTFOLIO

Isabel Cenamor cicenamor@inf.uc3m.es>

1. MOTIVATION

- ★ Different planning algorithms have been created in the planning community. However, none of them dominates in all cases (domains and/or problems). There is a global winner in each track, but this winner is not the best planner for all problems or in all domains
- ★ Previous reason motivates the idea of selecting different algorithms or planners. This combination requires the selection of the best planner in each problem
- ★ The most extended solution is the static combination, where the same configuration is used for all tasks. We propose a particular combination of planners for every single problem

2. PORTFOLIO

Given a set of base planners, $\{pl_1, \ldots, pl_n\}$, and a maximum execution time, T, a planning portfolio can be considered as a sequence of m pairs $< pl_1, t_1 >, \ldots, < pl_m, t_m >$, where $pl_i \in \{pl_1, \ldots, pl_n\}$ and $\sum_{j=1}^m t_j \leq T_{max}$.

There are two types:

- 1. **Static**: Same Configuration **FDSS** [Helmert, 2006]
- 2. Dynamic:
 - (a) Different Configuration per domain **PbP** [Gerevini et al., 2009]
 - (b) Different Configuration per problem [Cenamor et al., 2013]

4. PORTFOLIO CONFIGURATION

Learning Configurations

★ Number of learning domains and problems

★ Feature set

★ Pre-selection of Planners with Pareto Efficiency

	Planners	Domains	Problems	Features
C47	27	14	280	47
C96	13	25	790	96
C35	13	25	790	35

Planners Submitted to the Competitions

- ► *IBaCoP*: Pareto + Equal Time (ET)
- ► *IBaCoP2*: Classification Model + ET (C35)

Learning

- ► *LIBaCoP*: Classification Model + ET (C35)
- ► *LIBaCoP2*: Classification Model
 - + Regression Model

5. RESULTS

- General: Base planners from the other competitions
- Pareto: planners selected by Pareto

	General		Pareto			LAMA-2011
	ET	C47	ETP	C96	C35	
barman	20	20	20	20	20	20
elevators	20	20	20	20	20	20
floortile	8	8	9	7	11	6
nomystery	15	17	16	17	17	10
openstacks	20	20	20	20	20	20
parcprinter	20	20	20	20	20	20
parking	12	20	14	17	19	20
pegsol	20	20	20	20	20	20
scanalyzer	18	18	17	17	18	20
sokoban	17	19	18	18	19	19
tibybot	16	19	17	17	18	19
transport	20	19	20	19	20	16
visitall	20	20	20	20	20	20
woodworking	20	20	20	20	20	20
Total	246	260	251	252	262	250

6. A FUTURE DIRECTION

- Study the utility of the portfolios as function of the available time
- Include the execution information to take decisions in run-time
- Study the constraints that might change the performance of the planners