
Planning for Tourism Routes using Social Networks

Isabel Cenamor, Sergio Nuñez, Tomás de la Rosa and Daniel Borrajo

Computer Science Department, Universidad Carlos III de Madrid. Leganés (Madrid) Spain

Abstract

Traveling recommendation systems have become very popular applications for

organizing and planning tourist trips. Among other challenges, these applica-

tions are faced with the task of maintaining updated information about popular

tourist destinations, as well as providing useful tourist guides that meet the

users preferences. In this work we present the PlanTour, a system that cre-

ates personalized tourist plans using the human-generated information gathered

from the minube1 traveling social network. The system follows an automated

planning approach to generate a multiple-day plan with the most relevant points

of interest of the city/region being visited. Particularly, the system collects in-

formation of users and points of interest from minube, groups these points with

clustering techniques to split the problem into per-day sub-problems. Then,

it uses an off-the-shelf domain-independent automated planner that finds good

quality tourist plans. Unlike other tourist recommender systems, the Plan-

Tour planner is able to organize relevant points of interest taking into account

user’s expected drives, and user scores from a real social network. The paper

also highlights how to use human provided recommendations to guide the search

for solutions of combinatorial tasks. The resulting intelligent system opens new

possibilities of combining human-generated knowledge with efficient automated

techniques when solving hard computational tasks. From an engineering per-

spective we advocate for the use of declarative representations of problem solving

tasks that have been shown to improve modeling and maintenance of intelligent

1www.minube.com

Preprint submitted to Expert Systems with Applications October 24, 2016

systems.

Keywords: Tourism Routes, Automated Planning, Recommender Systems

1. Introduction

Tourism is an important social, cultural and economic phenomenon that

includes the movement of millions of people around the world with a big impact

on the economy of many countries. Therefore, the generation of tourism-related

tools can have a huge impact in society. Traveling recommendation systems have5

become very popular applications for organizing and planning tourist trips [1,

2, 3, 4]. One of the main bottlenecks of this type of systems consists of the

initial population and later maintenance of the information about Points Of

Interest (POIs), user ratings, and connection with geographic systems. However,

in recent years we have seen the emergence of new social network platforms10

where users can easily and are willing to update that kind of information (e.g.

TripAdvisor2 or minube3). Also, the extensive use of tourist mobile applications

allows users to request real time information about the schedules, guides or

plans that fulfill their preferences [5]. Data might come from different services,

so middle layers should be developed, as wrappers and crawlers that obtain and15

integrate available data.

From a crowdsourcing perspective [6], users of traveling social networks do

not receive an explicit call for supplying relevant tourist information or compos-

ing a plan. Instead, they are encouraged to share their experience of past trips

and give recommendations to everyone. Therefore, users are helping to acquire20

personalized relevant information using a collaborative filtering mechanism [7].

Collaborative filtering provides a subset of recommendations on what to visit,

where to sleep or where to eat. Additionally, the network structure facilitates

the acquisition of personalized information related to user’s contacts, which can

greatly help on weighting the recommendations by closeness to the user.25

2www.tripadvisor.com
3www.minube.com

2

www.tripadvisor.com
www.minube.com

As in other application areas, once the data collection and maintenance of

information has a reasonable solution, people look at applications that build

on top of that data. One such type of added-value applications on the tourism

sector is based on automatically generating tourist plans. Currently, there are

some platforms that provide related services. For instance, Tripomatic4 is a30

powerful tool for travel planning, but requires the user to select places to visit

and manually set up the plan. As another example, CityTripPlanner5 is able to

automatically generate tourist plans, but it does not suggest places to eat in a

reasonable way according to user pace, hunger and restaurant timetables.

In this paper we present PlanTour, a new tool that uses an automated35

planning approach to generate tourist plans. This planning system was built

for the ondroad project, a framework for the management and planning of

digital contents and services provided for bus travelers of the ALSA6 company.

Within this project, PlanTour is the sub-system in charge of building the

tourist plans for users visiting a particular city or region.40

In terms of planning applications, the main contributions of this work can

be summarized as:

• The automatic composition of the initial state and goals using information

from a social network. This partially tackles the problem of the slow start

of similar systems, which have to wait until a sufficient amount of data is45

collected to run properly.

• The modeling of user drives as part of the planning process, to obtain

more realistic plans in terms of deliberative reasoning. Specifically, sug-

gested restaurants are smoothly integrated in tourist plans just when it is

expected that the user is hungry based on her preferences.50

• Modeling the problem of recommending tourist POIs as an oversubscrip-

tion planning task, given that the available alternatives (visiting POIs)

4www.tripomatic.com
5citytripplanner.com
6http://www.alsa.es/en

3

www.tripomatic.com
citytripplanner.com
http://www.alsa.es/en

are many more than the ones a tourist can carry out with her time and

budget.

• Successful application of compiling away soft goals using the approach by55

Keyder and Geffner [8] to solve the oversubscription planning task.

• The domain-dependent problem decomposition using a clustering algo-

rithm. Resulting sub-problems match the problem of finding a plan for a

single day where candidate POIs are geographically close.

The following sections describe the problem formulation, the architecture60

with all its components, the representation of the domain, the experimental

results, the related work, and finally, conclusions and future work.

2. Problem Formulation

The generation of personalized tourist plans has been previously proposed

as a Tourist Trip Design Problem (TTDP) [9]. This generic class of problems65

comprises a set of candidate POIs together with their associated attributes

(i.e., type, location, timetable, etc.), travel time between POIs, user-dependent

functions relative to POIs (i.e., satisfaction, expected duration, etc.), the trip

time-span and the daily time limit. A quality solution to a TTDP is expected to

suggest a daily plan that respects the constraints imposed by POIs properties70

while maximizing the user utility. Modeling a concrete TTDP will depend on

the available tourist data and the user inputs. In PlanTour the TTDP is

modeled with the following elements:

• A fully-connected graph (V,E) where every node v ∈ V represents a POI

and every edge e ∈ E represents a path between two different locations.75

A function dt : E → R+ represents the time it takes to traverse an edge.

The possible routes between the locations do not always use the same

transportation means. Depending on the distance between two locations,

the edge can be traversed either walking or by car. Thus, the values of

the time function dt are computed considering these two options.80

4

• A tuple of properties associated to every POI in V . Thus, each property is

denoted by its function name (e.g type(v), duration(v)). These properties

are summarized in Table 1.

Table 1: Properties included in the TTDP formulation to characterize POIs.

Property Values
Type nature, building, sport, eating, events, . . .
Subtype subtype within a type (e.g. a museum is a subtype of building)
Score the POI total score taken from minube (POI popularity)
Timetable the opening (t open) and closing time (t close)
Duration estimated time to visit in function of the subtype (tp)
Location the POI geo-coordinates (latitude and longitude)

• A tuple of properties associated to the user for encoding her constraints

and preferences. For instance, the time-span [init trip,end trip] for the85

whole visit. Table 2 shows the list of user properties. Given that our

plans also include eating actions, we define Vr ⊂ V as a special set of

POIs representing the places where the user can eat. Plans should consider

the number of times the user wants to eat in a day (times eat). Also, the

selection of restaurants should respect the minimum (hmin) and maximum90

(hmin) time that the user considers reasonable to wait until eating again.

These constraints forbid the concatenation of two POIs belonging to Vr,

but forces to include some of them when the user is expected to be hungry.

A solution to this TTDP is a sequence of time-stamped actions, which in-

cludes tourism activities and the necessary travels to perform these activities.95

This plan should satisfy the time-span constraint for the whole visit and the

daily time constraints, where the user wants to perform the activities.

3. System Architecture

The PlanTour architecture is composed of three main sub-services (see

Figure 1). The Tourist Plan Manager (TPM) receives the inputs for the Plan-100

5

Table 2: Properties of users that can be specified from his/her preferences.

Property Description
location where the user is
[init trip,end trip] the trip time-span
hmin minimum time to pass to recommend a place to eat
hmax maximum time to pass to recommend a place to eat
times eat maximum number of times the user eats on a day
init time the first time the user is available in the day
end time the last time the user is available in the day. When this

time is due, we assume the user is tired to do more things

Tour planner. The inputs of PlanTour are: the city or region the user is

going to visit; when s/he is going to be available (time to arrive and leave the

place); and possibly, some constraints and preferences. Users are not required to

input a complete list of their constraints and preferences. Therefore, we provide

default values for these properties. The default values are: [init time, end time]105

= [10:00 AM, 8:00 PM], the time interval that the user can use to perform an

activity, times eat=2, only two POIs from Vr will be recommended in a day;

and hmin = 2 and hmin = 5, so that at least two and at most five hours should

pass before recommending a place from Vr again.

Tourist Plan
Manager

Request: city, schedule,
 constraints,
 preferences

 MiNube

Automated
Planner

Tourist Plan

PlanTour
Google Maps

Viewer

Points of interest,
rankings, city info

Figure 1: Architecture of PlanTour.

6

When a plan is requested by the user, the TPM retrieves the needed informa-110

tion from the minube social network. This information is pre-processed to create

planning problems in the standard declarative language used by the automated

planning community, PDDL (Planning Domain Definition Language) [10]. The

Automated Planner module solves the planning tasks using two different met-

rics: a) maximizing the user utility of visiting places; and b) minimizing the115

total traveled route. The Viewer module collects the final plans and returns a

web page where all locations appear together in a map provided by Google Maps

API. Additionally, it shows a map per day, and each location in an individual

map. In the following subsections we describe in more detail each module.

3.1. minube Service120

minube is a traveling social network where users can: get inspiration from

other users to decide the destination of their next trip; create a selection of POIs

for the desired city or region; and share with others their experience, photos and

recommendations.

In PlanTour, interesting POIs and their properties are retrieved from min-125

ube to formulate the planning problem. This social network maintains a data

base created by crowdsourcing where the minimal piece of information is the

POI. Users continuously add and update POIs with photos, opinions, recom-

mendations, etc. These POIs are reviewed by a group of experts in minube

that provide quality assurance over the basic POI information: location; phone130

contact; and web site. Specifically, we retrieve from minube the type, subtype,

geo-localization and user votes used to compute the score. Expected duration

and timetables are frequently not available. We provide a default value per POI

type, suggested by domain experts. We could easily replace the queries to this

service for any other similar service such as Tripadvisor.135

7

3.2. Google Maps

Google7 provides a map service with a highly visual interface portable on

all platforms and devices. This service has detailed street information together

with distance and time estimations between locations. It includes an open API

allowing customization of the map output. We use Google Maps in two different140

ways. In the first one we query the service to collect estimated time to move

among the main locations in several cities and zones. In the second one, we

use the service as part of the plan visualization. Again, we could replace this

service for similar ones, as OpenStreetMaps.8

3.3. Tourist Plan Manager145

This module handles TTDPs in PlanTour, generating planning tasks that

are given to an automated planner, using the information extracted from min-

ube services. For most regions or cities the list of POIs can be huge, and there

will be no plan that can visit all of them. Therefore, in the first step, the TPM

queries minube to retrieve the set of the best N POIs for the selected destina-150

tion. The system can use any value of N , but an obvious constraint is to set N

to N ≥ k× n, where k is the number of days and n is the maximum number of

POIs that can be visited per day. We suggest n to have values between 20 and

50 to include enough diversity of places in the routes.

The set of best POIs is built from a ranking computed as the average between155

the popularity of POIs and the aggregated score each POI has received from

the user’s contacts in the minube network. In case the user has no contacts,

the ranking is only determined by the general popularity of each POI. The

POIs’ popularity is based on the number of entries, opinions, photos and videos.

Thus, this process is an initial filter that generates a subset of POIs which are160

considered the best ones by the user contacts and the public in general. In

addition, we run a second filter that removes all places that are not currently

7http://www.google.com/maps/
8http://www.openstreetmap.org/

8

available. For instance, POIs with type (temporal) event that are not being

held in the visit interval.

The number of possible plans is exponential in N . Thus, if N is still big165

enough to include all potentially interesting POIs, no automated planner is able

to handle planning tasks of this size. Therefore, the second step consists of

splitting the TTDP into single-day problems, assigning to each sub-problem a

disjoint subset of POIs that are geographically close. This step tries to mimic

the way in which people prepare their tourist visits in plans for several days.170

The solution to the whole problem is computed as the concatenation of the

solution to each sub-problem.

When clustering the POIs, we first tried the k-means algorithm [11], using

the (x, y) coordinates of the geo-localization as features, and setting the number

of clusters to the number of available days. However, this algorithm presents175

some problems with cities or regions where their POIs are not evenly distributed:

plenty of POIs can be grouped together while few others can be far away. Then,

we decided to implement a balanced k-means [12], a modification to the original

algorithm that imposes the constraint of having the same number of elements

in each cluster. The algorithm works as follows: an initialization step randomly180

selects a centroid for each cluster from the set of POIs. Then, an iterative

procedure computes these steps:

• arrange the distances from each POI to each cluster centroid in ascending

order;

• following this ordering, assign a POI to a cluster if it has not been assigned185

yet, and if the cluster has not exceeded the limit of N/k POIs; and

• using the previous assignment, re-compute the cluster centroids as the

mean of the elements in the cluster.

The output of the balanced k-means can be seen as a way of giving a balanced

pace of visits for the whole trip. Figure 2 shows the resulting balanced clusters190

for three different days in London after running the algorithm.

9

Figure 2: A balanced distribution of clusters for three different days in London.

Additionally, the TPM computes the estimated time for driving and walking

from each POI to the rest of POIs in the same resulting cluster. We only use

the best way to move in the planning problem: if it is a short distance, the

provided route suggests walking; otherwise, it suggests driving. Figure 2 shows195

that most POIs are very close together, so the user could walk. However, there

are some POIs with a large distance to the rest, which suggests the use of a car

or public transport.

Time estimations are computed with the POI geo-coordinates using two

different procedures:200

1. Google Distance API9 that provides estimated travel time between two

locations. This service has restricted free use per day and per computer.

Therefore, we use it below the given bound, obtaining the estimated time

starting from the most popular POIs, since they are likely to appear in

most plans. The time estimations that can not be retrieved with this API205

are computed with the second procedure.

2. Computing the estimated time dividing the distance between two given

POIs by the average velocity of the traveling mode. The distance is the

result of the Haversine formula [13], which computes the shortest distance

9http://code.google.com/apis/maps/documentation/

10

http://code.google.com/apis/maps/documentation/

between two points in the surface of the Earth using geo-localizations. The210

average velocity is set to 4 km per hour if the distance is short (walking

will be suggested) or 50 km per hour if it is a long distance. These speeds

are similar to the ones used by Google, and in the case of the car it is the

average of the speed limit in towns in Europe. These time estimations

are less accurate than Google estimations given that in this case the real215

paths and road directions are not being considered.

The relevant information for formulating a per day sub-problem of TTDP

is (1) the sub-graph of POIs being considered this day, (2) the properties of

these POIs, and (3) the user properties and constraints. This information for

a given day is compiled into a planning task, which is formulated in PDDL.220

The TPM generates a problem per day and invokes the automated planner in

two iterations. The first one solves a utility maximization problem with the

objective of providing the user a plan for visiting the POIs that give her the

maximum satisfaction. The second one solves a distance optimization problem;

once the set of POIs have been decided, the user can spend the minimum time225

going from one POI to another. Finally, the TPM combines the single-day plans

returned by the automated planner into a single tourist plan. Figure 3 shows

an example of a returned plan.

Tourist Plan
10:45 visit big-ben [60.00]
11:45 walk big-ben st-james-park [20.00]
12:05 visit st-james-park [30.00]
12:35 free-time [120.00]
14:35 walk st-james-park little-frankies [15.00]
14:50 eat little-frankies [60.00]
15:50 walk little-frankies picadilly-circus [20.00]
16:10 visit picadilly-circus [15.00]

Figure 3: A plan for a single day. Each row shows the time of the day, the activity to perform
and the estimated duration (in minutes).

11

3.4. Automated Planner

Automated Planning is a subfield of AI that develops problem solvers that230

find solutions to problems in the form of sequences of actions, called plans [14].

These plans should take a system (or human) from a given initial state to a state

where a set of goals are achieved. Most planners are domain-independent, so

the code of the planner does not include any knowledge on the domain model.

Therefore, they take as input a planning task and their output is a plan. A235

planning task is usually represented declaratively with (1) a domain-model, a

specification of which actions can be applied in the environment, and (2) a

problem, a description of the initial state and goals and, optionally, a metric

to be used by the planner. If given, the metric will tell the planner that the

user wants the plans to minimize (maximize) a given criteria, such as time, cost240

or satisfaction. Each action is modeled similarly to a rule, and includes a set

of preconditions that must hold in a state in order the action to be applicable,

and a set of effects that are expected to change the state once the action is

applied. The effects can also contain information on the cost of applying the

action according to different metric criteria. The cost of a plan according to245

a given metric is computed as the sum of the costs of the actions in the plan

according to that criteria.

One of the main benefits of using automated planners is that knowledge

engineers can focus on modeling the application requirements and then they

can use an off-the-shelf solver that has been developed and optimized by the250

planning community. In our case we model TTDPs in PDDL, the standard

language in the community. And we use the Metric-FF planner [15], since

it is one of the very few planners that can handle all the language features we

need for our system, such as numeric preconditions in the actions descriptions

and metric optimization. We do not need other kinds of more complex planning255

systems as temporal planners (they can reason about concurrent temporally an-

notated actions), given that our planning tasks do not have concurrent actions;

a user can only perform an action at a time. Metric-FF is a heuristic search

planner. Starting in the initial state, the planner generates a search tree where

12

nodes represent states and arcs represent actions. Metric-FF uses two search260

algorithms, Enforced generate Hill-Climbing (EHC) and Weighted Best-First

Search, and a heuristic function that estimates the cost of a plan from each

state to a state where the goals are true. The reader is referred to its papers for

more information on how it works [15]. We have adapted the planner to skip

EHC and run the WBFS directly. Given a planning task, the TPM calls the265

planner twice. The first call to the planner solves a problem with the metric of

maximizing the user utility. The second call solves a problem with the metric of

minimizing the distance to travel among POIs. Since, at this point, the system

already has a feasible solution provided by the first call to the planner, we give

the planner a short time bound (we are using 10 seconds) to return a solution as270

fast as possible. The goal of this second optimization step is to obtain shorter

routes under the assumption that users prefer to have some free time in their

plans rather than having a tight schedule.

3.5. Viewer

This module creates a web page that includes external information from275

Google maps. Figure 4 shows an example of the resulting web page and its

links. The maps included in the final version are of four different types:

Figure 4: Image of the final web page, with the tourist plan and the links to the city of London
in Google Maps.

1. Plan Overview: a global map with all the POIs locations included in the

plans of all days.

13

2. Map per day: map that only includes the locations of the day with the280

suggested route.

3. Location point: map where there is only one location (a POI).

4. Movement between two points: the route between every two points in the

plan.

4. PDDL Representation285

In this section we describe how a TTDP for PlanTour is modeled using

PDDL. Planning tasks are modeled with PDDL in two files: the domain and

the problem file. The domain contains a high-level declarative description of a

transition system in terms of object types, predicates and actions that transform

states into other states. The domain file is usually the same for all planning290

tasks within an application domain. The problem file contains the description of

a particular situation. It defines the set of objects participating in the planning

task, an initial state, a set of goals and, optionally, a metric. In our application,

a planning task corresponds to a sub-problem for a single day, which includes

all user properties and POIs assigned by the clustering algorithm.295

We have defined two different domain models for PlanTour. The utility

model focuses on filtering the candidate POIs to obtain a feasible subset that

maximizes the user utility while respecting the constraints imposed by the need

to travel among locations. The travel model optimizes user travels among POIs

in order to offer some free time. We first describe the common parts of both300

models and then their differences.

First, a hierarchy of types is defined in the domain files for POIs. We

use the retrieved types and subtypes from the database of minube. POIs are

then defined as objects of their corresponding type in the problem file. The

user properties and the rest of POIs properties are defined as numeric fluents.305

Additionally, a numeric fluent current time is used to simulate the passing of

time, and the numeric fluent hunger is used to keep track of the corresponding

user’s drive. We have defined the following actions:

14

• visit(u, p) requires that the user u is at the same location as the POI p.

Also, the user must have enough time to visit the place, the place has to310

be open until u finishes the visit, and u should not have visited p before.

Another condition is that u is not very hungry. This is controlled by

keeping track of the elapsed time from the last visit to a POI v ∈ Vr and

checking that it does not surpass a given threshold (i.e., hunger≤ hmax).

The effects of this action are that u has visited p, the current time is315

increased by the duration of the visit, the user utility is increased as a

function of the score (rating) of the POI and hunger is increased too. The

complete description is shown in Figure 5.

(:action VISIT

:parameters (?u - user ?p - poi ?d - day)

:precondition (and (user-at ?u ?p)

(<= (hunger) (h-max))

(>= (current-time ?u ?d) (open ?p ?d))

(<= (init-time-available ?u ?d) (current-time ?u ?d))

(<= (+ (visit-duration ?p) (current-time ?u ?d))

(close ?p ?d))

(<= (+ (visit-duration ?p) (current-time ?u ?d))

(end-time-available ?u ?d))

(normal-mode)

(not (visited ?u ?p)))

:effect (and (visited ?u ?p)

(can-walk)

(increase (total-score) (score ?p))

(increase (current-time ?u ?d) (visit-duration ?p))

(increase (hunger) (visit-duration ?p))))

Figure 5: The PDDL representation of the visit action.

• walk(u, place1, place2) refers to the walking movement of the user u from

location place1 to place2. It is only possible if the POIs are close in the320

map (the journey duration is less than 1.5 hours). The user should be

at place1 and at the end the user will be at place2. We control that the

plan does not include two contiguous movements, since we assume the

graph is fully connected. Therefore, this action can only be executed if

the previous action was not a move (walk or drive) action. As effects, the325

current time is increased by the time it takes to walk between place1 and

place2, and hunger is also increased as in the previous action.

15

• drive(u, place1, place2) is similar to the previous one, but using the car.

The main difference is that the POIs have to be far from each other.

• eat(u, eat place) refers to the action of the user u going to a restaurant330

eat place. The user should be at eat place. Also, the number of v ∈ Vr that

u has visited should not exceed times eat, u’s hunger has to be between

the given thresholds, hmin ≤hunger≤ hmax, the user should have enough

time to go to the restaurant, and the place has to be open until u visits

the place. The effects of this action decrease the user’s hunger, increase335

the current time by the duration of the visit, increase the user’s utility by

the place score, and add that the user has visited the place eat place.

• pass-time(u, time-slot) refers to the action of u doing nothing (as a

no-op). u should have enough time to execute this action during a time-

slot duration. The effects of this action are that current time passes the340

corresponding time-slot, the user’s hunger increases proportional to the

value of time-slot, and the user’s utility decreases proportionally to the

wasted time. This action is essential in the domain model because there

are some cases where performing any other action is not possible. Mainly,

when their preconditions are not true at the current time, but they become345

true later after some time (e.g. some place opens).

In the problem files, the initial state includes the user’s properties (Table 2)

and the information from the formulated TTDP regarding a particular day.

Thus, the set of POIs assigned by the clustering algorithm determines the set

of facts belonging to the initial state; that is, the properties and the complete350

distance graph for this set of POIs. The goals depend on the model being used.

Now, we will describe the domain and problem differences for the two planning

steps.

4.1. Utility Model

The objective of this model is to maximize the goal score for each problem:355

16

goal score=
∑|V |

i=1 score(vi)× visited(vi)

where |V | is the number of candidate POIs for the day and the function

visited: V → {0, 1} represents whether each vi ∈ V is included or not in the

final plan. Since not all POIs will be visited, instead of defining visiting them

as hard goals, they are considered as soft goals. Hard goals must be met by any360

valid plan. Soft goals are not forced to be achieved by the plan. However, not

achieving them penalizes the quality of the plan. When planning for the utility

model, all goals are declared as soft goals. The goal set is defined as visiting all

candidates POIs. We handle soft goals following the approach described in [8],

where all goals are hard goals (i.e., they must be true at the end of the plan), but365

each domain action achieving a goal has a skip action achieving the same goal

but with a high penalty. In our case, during the “normal-mode” the user visits

as many POIs as she can until time runs out. Then, the “end-mode” achieves

the rest of goals actually skipping the visits. Using this model, the planner has

to achieve all goals, but only the plan during the “normal mode” is used as the370

tourist plan.

4.2. Travel Model

In this model the metric consists of optimizing the total traveled distance:

goal score=
∑|G|−1

n=1 distance(pn, pn+1)

where G ⊆ V is the set of goals (POIs) included in the tourist plan generated375

with the utility planning task. In this new task all goals are hard. Therefore,

the goals not belonging to G are not included in the new set of goals, and the

domain file does not include skip actions for solving a goal. This modification is

safe because the solution to the utility planning task guarantees the solvability

of this new problem. Indeed, the traveled distance in the plan for the utility380

planning task works as an upper bound of the cost of the plan in the second

model, and new solutions are used just in case they have better quality.

17

5. Experimental Results

The ALSA company wanted the first prototype to work for two different

regions in Spain: Granada and Asturias. But, in order to test the behavior of the385

system, we include here results for a group of other cities and regions (geographic

zones) around Europe, given that most users of minube come from Europe. We

have generated common scenarios in four cities and three regions. We selected

Madrid, Oviedo (Asturias), London and Rome as cities; and Granada, Belgium

and Hesse (as regions/countries). We have generated scenarios varying the390

number of the days in the travel from two to seven.

We have evaluated the results considering the run time, including pre-processing

and total planning time, and the plan quality, measured as the sum of scores of

the visited POIs. Additionally, we have evaluated the effect of using the hunger

drive as part of the decision making. The experiments were run on a 2.3Ghz395

Intel i5 processor with 4GB of RAM. We developed TPM in Python. The auto-

mated planner we used, Metric-FF [15] was developed in C. The whole system

runs on Ubuntu 14.04 LTS.

Table 3 shows the results in terms of run time, where tg is the time for gen-

erating all planning tasks and tt is the total run time, including the generation400

time. The generation time corresponds to the CPU time spent in pre-processing

information from minube, performing the clustering of POIs and writing the

planning task in PDDL. As it can be seen, tg never exceeds five seconds and in

most cases it represents only a small fraction of the total time. On the other

hand, tt aggregates tg and the time spent in planning a route for each day.405

Given that our approach performs a decomposition strategy and each day has a

limited set of pre-selected POIs, the total time only increases linearly in terms

of the number of days. The average of tt per day is around 3.81 seconds. This

execution time is acceptable for a route computation if we take into account the

time it takes humans to generate routes.410

Table 4 shows the number of POIs included per experiment and the number

of POIs visited in the generated solutions. This a proportion of solved goals

18

Table 3: Time to generate the PDDL planning task (tg) and the total run time (tt) in seconds
for different cities and regions.

Days
Cities 2 3 4 5 6 7

Madrid tg 0.83 1.47 1.36 1.62 2.26 2.40
tt 5.73 7.32 7.43 11.22 11.38 37.01

Oviedo tg 0.66 0.87 1.18 1.48 2.78 3.46
tt 12.66 23.47 10.50 23.37 28.56 34.56

London tg 2.50 2.65 3.34 2.95 2.95 4.70
tt 4.21 5.01 5.99 16.18 13.14 18.83

Rome tg 2.19 1.81 2.80 2.25 2.39 4.65
tt 15.29 15.05 18.84 27.68 27.44 35.51

Granada tg 0.75 1.05 1.95 1.54 2.89 1.94
tt 12.79 13.65 19.93 17.14 24.01 20.97

Belgium tg 0.58 0.88 1.04 1.26 1.36 1.63
tt 12.47 3.74 13.77 26.78 32.50 34.13

Hesse tg 0.53 0.50 0.50 0.44 1.43 1.91
tt 4.79 16.48 3.34 6.97 6.97 15.66

with the oversubscription planning task with respect to all the included POIs in

the utility model design. For these experiments, we use the balanced k-means to

have a similar number of POIs per problem. Previous experiments showed that415

the standard k-means produced very unbalanced daily plans. Thus, the gener-

ated solutions were not usable from an application point of view. Therefore, no

additional tests were performed using that approach. The ratio between POIs

included and POIs visited is between 16% (London) and 34.55% (Hesse). This

ratio shows that the planner has a high number of alternatives and in all cases420

more than 50% of the candidate POIs are discarded in the first iteration of the

planner.

Table 5 shows the quality of the generated solutions. We include two different

metrics, q and qbest, where:

• q is the ratio between the quality of a plan (sum of scores of visited POIs425

shown as the numbers on the left in cells of Table 4) and the total sum of

scores from all POIs included in the problem (shown as the numbers on

the right in cells of Table 4).

19

Table 4: Number of POIs visited in a k-days trip (left number in each cell) vs. number of
considered POIs per experiment (right). The maximum number of POIs is 40k, where k is
the number of days. The average number of visited POIs per problem is between 9 and 10.

Number of days (k)
Cities 2 3 4 5 6 7

Madrid 20/78 29/114 41/150 52/190 66/264 54/264
Oviedo 25/71 36/99 46/130 60/164 67/190 68/217
London 12/ 77 24/111 24/149 36/181 48/215 42/253
Rome 21/80 33/119 41/157 54/192 63/225 75/257
Granada 22/69 34/101 45/129 47/153 53/179 54/198
Belgium 23/75 28/112 23/148 46/184 55/218 70/250
Hesse 23/73 32/86 32/89 35/91 54/126 57/165

• qbest is the ratio between the quality of a plan with N visited POIs and

the sum of the best N POIs available in the problem.430

The ratio q measures the resulting quality with respect to the maximum

quality that can be obtained if all POIs in the city/region could be visited.

However, given that it is not feasible to visit all POIs (as we already have

seen in the previous table), we included metric qbest to consider the situation

in which the N best POIs are naively selected in each problem, where N is435

number of visited POIs in each plan. We compute the sum of scores of these N

best POIs and compare it to the quality obtained by our plans. These results

show that q is around a 50% of the total score while qbest increases to around

70%-80%. High values of qbest indicate the planner is able to schedule in a day

the most relevant POIs for the cluster. However, constraints on user movements440

and eating times prevent obtaining higher ratios.

Regarding the hunger drive, we wanted to see the difference between the

number of meals in the generated plans (mh) and the number of meals if we

naively select the best N POIs from the set of available POIs for each day (mN),

where N is number of visited POIs in each plan. Table 6 shows the maximum,445

the minimum and the mode of the number of recommended POIs to eat in each

city per scenario. Variations of mN depend on POI relative scores compared to

the rest of POIs in the same cluster. If there are many restaurants with a good

20

Table 5: Ratios of the plan quality. Row qbest is the ratio between the quality of the obtained
plans and the utility of visiting the best N POIs of each day. Row q is the ratio between the
quality of the obtained plans and the sum of the utilities of all the retrieved POIs.

Days
Cities 2 3 4 5 6 7

Madrid qbest 0.94 0.91 0.89 0.82 0.85 0.81
q 0.59 0.57 0.58 0.70 0.61 0.41

Oviedo qbest 0.90 0.88 0.90 0.90 0.84 0.77
q 0.88 0.85 0.81 0.91 0.81 0.77

London qbest 0.78 0.92 0.94 0.90 0.92 0.46
q 0.51 0.76 0.63 0.75 0.80 0.37

Rome qbest 0.90 0.88 0.92 0.94 0.74 0.91
q 0.87 0.87 0.87 0.90 0.86 0.88

Granada qbest 0.95 0.86 0.82 0.67 0.93 0.88
q 0.93 0.87 0.84 0.83 0.88 0.74

Belgium qbest 0.89 0.77 0.82 0.80 0.81 0.81
q 0.89 0.71 0.55 0.72 0.70 0.75

Hesse qbest 0.88 0.92 0.86 0.78 0.95 0.87
q 0.85 0.84 0.62 0.54 0.81 0.81

score (e.g., as in some clusters in Madrid), a naive selection of POIs will end up

with unrealistic plans. Even though a number of restaurants could be filtered out450

in each cluster, our planning approach is able to consider all of them and select

the suitable ones in terms of time and planned route. Nevertheless, if there is

no eating POI in a cluster, the system cannot recommend any place to eat. For

instance, in some cases in London and Belgium, there are no recommendations

on some days (minimum 0) because no restaurant passes the initial filter of POIs455

around the cluster area.

The hunger drive is useful to recommend meals when it is expected that

the user wants to eat. The planner can propose a restaurant considering the

time interval that has passed without the user eating, which should be in the

interval [hmin, hmax]. Our default values [2, 5] are flexible enough for generating460

plans with 2 restaurant recommendations in most of the evaluated scenarios.

Conversely, the naive selection shows that unrealistic routes can be obtained if

eating places are not differentiated from other non-eating potential POIs.

21

Table 6: Maximum, minimum and mode for the number of recommended POIs to eat (meals)
when using the hunger drive (mh) in our approximation or when selecting best POIs (mN)
naively.

Days
Cities max min 2 3 4 5 6 7

Madrid mh 2 1 2 2 2 2 2 2
mN 7 0 1 0 4 3 4 0

Oviedo mh 2 1 2 2 2 2 2 2
mN 7 0 3 2 2 5 4 5

London mh 1 0 1 1 1 1 1 1
mN 3 0 0 0 0 0 1 0

Rome mh 2 1 2 2 2 2 2 2
mN 3 0 0 1 2 2 0 1

Granada mh 2 1 2 2 2 2 2 2
mN 6 0 3 3 1 4 2 1

Belgium mh 2 0 1 1 2 2 2 1
mN 3 0 0 0 0 0 0 0

Hesse mh 2 1 2 2 1 2 1 2
mN 4 0 4 2 2 1 1 1

6. Related work

The development of applications for building customized tourist plans has465

increased in recent years due to the popularization of mobile devices and the

continued growth of tourism services. Research efforts on solving TTDP prob-

lems varies in many aspects, regarding the acquisition of user preferences, the

algorithmic approach for filtering interesting POIs and the technique for arrang-

ing these POIs in tourist routes [9]. The generation of these tourist routes is470

commonly solved by some version of the Team Orienteering Problem (TOP).

The problems are posed as optimization tasks and solved using diverse tech-

niques such as classical optimization methods or stochastic local search. The

main benefit of using automated planning consists of being able to easily include

constraints into the models. For instance, we have included some of the features475

that are listed as future work in the review paper [9], such as including free time,

or flexibly integrating restaurant suggestions by using drives (as hunger).

CityTrip Planner [4] creates tourist guides based on a small questionnaire

22

that tries to obtain the user preferences and constraints. It was initially designed

for five cities in Belgium. The POI database is populated and maintained up480

to date by the tourist office of the different cities. It has continued to grow,

and now it includes several other cities around the world. They model the

problem as an extension of TOP with time windows, and solve them using

stochastic local search. The generated solution can be downloaded to a mobile

GPS device allowing the tourist to track her route. However, as other TOP485

approaches, they do not suggest free time for the user and they do not base

their recommendations on user’s drives.

Automated Planning has been previously used in some tourism-related ap-

plication. samap [2], captured and updated a user model according to previous

user behavior when she visited other cities. The list of attractions is selected490

using a Case Based Reasoning approach, which retrieves similar users that have

already visited the same city. The planning model allows the system to compute

plans containing POIs that are more likely to interest the user, together with

directions on how to get from one place to another. Our approach follows the

same ideas, but addresses its main drawback, the scarcity of initial tourist infor-495

mation. In SAMAP, they had to manually provide all the information, while we

access it directly from a social network. Also, we use drivers for flexibly includ-

ing eating actions, and use external services for map related computations (in

SAMAP, maps were manually defined in a file). eTourism [16] considers eating

actions, but they are modeled as dummy actions that add time gaps into the500

plan while the user stays in the last visited POI, so she can use this free time to

eat. In PlanTour, eating actions correspond to real recommendations and the

time to go to restaurants is also taken into account. In addition, eTourism also

has the problem of having very little initial information, as it was only deployed

for the city of Valencia (Spain). Le Berre et al. [17] proposed a planning model505

for building a personalized museum visit. Their model is similar to the Plan-

Tour model in the way they encode current-time, or POI properties. In their

case, properties are utility and expected duration for viewing an artwork. This

system also suffers from the scarcity of available information, specially because

23

topology of museums (i.e., graph for rooms distribution and artwork locations)510

as well as artwork relevance are not frequently available and need to be fetched

manually.

In PlanTour we have used existing web services to enrich our application

capabilities. This is also the case of Itinerary Planning [18], which estimates

distances between POIs using Google API and retrieves POIs utility with the515

average score from Yahoo Travel. However, the user has to provide the initial list

of POIs, and the system needs a MapReduce framework as they try to explore

the space of all possible itineraries.

TripBuilder [19, 20] is a system based on Flickr and the itineraries followed

by different tourists. The POI information is extracted from Wikipedia. They520

model a problem that explicitly needs a source POI, a destination POI, the total

number of POIs to be visited and an optional set of POIs not to be visited. The

method is an instantiation of the Generalized Maximum Coverage, extracting

the routes from the timestamp in the published photos in Flickr. In contrast, we

have POIs with popularity scores and no connection among them. Our system525

can generate routes that were not predefined by other users, thus we could

propose more innovative solutions. Besides, TripBuilder does not recommend

any meals or includes free time in its routes. Another system based on Flickr [21]

creates routes between 2 to 6 hours within 6 different cities in China. In this

case, routes are extracted with the geo-spatial meta-data of Flickr pictures and530

the information from Google places. This system is restricted to plans of a few

hours and it does not include particular recommendations for meals or free time.

7. Conclusions and Future Work

We have presented PlanTour, a new sightseeing recommender system that

is able to work properly for most popular tourist destinations thanks to its abil-535

ity of automatically gathering tourist information directly from a social network.

The system takes into account the number of days for the visit and plans ac-

cordingly. It divides the city/region to visit by the number of days and provides

24

a tourist plan for each day that includes highly valued POIs by minube users,

as well as the routes between these POIs. These plans are aware of the user540

drive of being hungry, as they suggest good places to eat when it is more likely

to satisfy user’s needs.

Among the main strengths of PlanTour we can mention: use of a declar-

ative model of the task that allows easy modeling and maintenance; explicit

consideration of relevant drives (only hunger right now); integration of human545

provided knowledge in a social network with an efficient domain-independent

problem solver to solve a hard combinatorial task; or two-steps optimization

task to improve users’ utility (satisfaction) and time to spend visiting a place as

shown in the experimental results. Some current weaknesses of PlanTour are:

the current dependency on minube information, though we already are obtain-550

ing information from Yelp and Google Places; the limit on accesses to Google

Maps, though we can already obtain similar services from OpenStreetMaps;

there is no on-line adaptation to the users; or lack of reasoning on some other

relevant drives, as fatigue.

Having modeled both users preferences and drives within the PDDL planning555

tasks facilitates the inclusion of new features to the decision making process.

For example, in the future we want to modify the model to include fatigue

as a drive that relates the user stamina with the number of continuous visits

or the speed of visits. In case the fatigue is estimated to fall down below

a given threshold, the system would suggest POIs where the user could rest,560

such as parks or coffee shops. Using a declarative model, such as the one in

PDDL, provides knowledge engineering advantages over traditional techniques

that pose the problem as a classical optimization problem. Additionally, users

can manually provide plans in minube. So, in the future, we would like to reuse

these plans to generate better plan recommendations. Also, following other565

works in interleaving planning, execution and learning [22], we would like to

generate an integrated tool that could help the user while executing the tourist

plans to re-plan on-line, repairing the plan under execution and learning user

models that improve future planning episodes.

25

Acknowledgments570

This work was supported by the Spanish project ONDROAD (TSI-090302-

2011-6), MICINN project TIN2011-27652-C03-02 and MINECO project TIN2014-

55637-C2-1-R.

References

[1] T. Berka, M. Plößnig, Designing recommender systems for tourism, in: Pro-575

ceedings of the 11th International Conference on Information Technology

in Travel & Tourism, 2004.

[2] L. Castillo, E. Armengol, E. Onaind́ıa, L. Sebastiá, J. González-Boticario,

A. Rodŕıguez, S. Fernández, J. D. Arias, D. Borrajo, SAMAP. A user-

oriented adaptive system for planning tourist visits, Expert Systems with580

Applications 34 (2).

[3] A. Moreno, A. Valls, D. Isern, L. Marin, J. Borràs, Sigtur/e-destination:

ontology-based personalized recommendation of tourism and leisure activ-

ities, Engineering Applications of Artificial Intelligence 26 (1) (2013) 633–

651.585

[4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, D. V. Oudheusden, The

city trip planner: An expert system for tourists, Expert Systems with

Applications 38 (2011) 6540–6546.

[5] M. Rodriguez-Sanchez, J. Martinez-Romo, S. Borromeo, J. Hernandez-

Tamames, Gat: Platform for automatic context-aware mobile services for590

m-tourism, Expert Systems with Applications (2013) 4154–4163.

[6] L. Manikonda, T. Chakraborti, S. De, K. Talamadupula, S. Kambhampati,

AI-MIX: using automated planning to steer human workers towards better

crowdsourced plans, in: Proceedings of the Twenty-Eighth AAAI Confer-

ence on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,595

Canada., 2014, pp. 3004–3009.

26

[7] J. P. Lucas, N. Luz, M. N. Moreno, R. Anacleto, A. A. Figueiredo, C. Mar-

tins, A hybrid recommendation approach for a tourism system, Expert

Systems with Applications (2012) 3532–3550.

[8] E. Keyder, H. Geffner, Soft goals can be compiled away, Journal of Artificial600

Intelligence Research 36 (1) (2009) 547–556.

[9] D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, A survey on

algorithmic approaches for solving tourist trip design problems, Journal of

Heuristics 20 (3) (2014) 291–328.

[10] M. Fox, D. Long, PDDL2.1: An extension to PDDL for expressing temporal605

planning domains, Journal of Artificial Intelligence Research (2003) 61–124.

[11] S. P. Lloyd, Least squares quantization in pcm, unpublished Bell Labora-

tories Technical Note. Portions presented at the Institute of Mathematical

Statistics Meeting Atlantic City, New Jersey, September 1957. Published

in the March 1982 special issue on quantization of the IEEE Transactions610

on Information Theory (1957).

[12] S. Zhong, J. Ghosh, A unified framework for model-based clustering, The

Journal of Machine Learning Research 4 (2003) 1001–1037.

[13] C. Robusto, The cosine-haversine formula, American Mathematical

Monthly (1957) 38–40.615

[14] M. Ghallab, D. Nau, P. Traverso, Automated planning: theory & practice,

Access Online via Elsevier, 2004.

[15] J. Hoffmann, The metric-ff planning system: Translating ”ignoring

delete lists” to numeric state variables, Journal of Artificial Intelligence

Research 20 (2003) 291–341.620

[16] L. Sebastia, I. Garcia, E. Onaindia, C. Guzman, e-tourism: A tourist rec-

ommendation and planning application, International Journal on Artificial

Intelligence Tools 18 (5) (2009) 717–738.

27

[17] D. L. Berre, P. Marquis, S. Roussel, Planning personalised museum visits.,

in: Proceedings of the 23rd ICAPS, 2013, pp. 380–388.625

[18] G. Chen, S. Wu, J. Zhou, A. K. Tung, Automatic itinerary planning for

traveling services, Knowledge and Data Engineering, IEEE Transactions

on 26 (3) (2014) 514–527.

[19] I. R. Brilhante, J. A. F. de Macêdo, F. M. Nardini, R. Perego, C. Renso,

Tripbuilder: A tool for recommending sightseeing tours, in: Advances in630

Information Retrieval - 36th European Conference on IR Research, ECIR

2014, Amsterdam, The Netherlands, April 13-16, 2014. Proceedings, 2014,

pp. 771–774.

[20] I. R. Brilhante, J. A. F. de Macêdo, F. M. Nardini, R. Perego, C. Renso,

On planning sightseeing tours with tripbuilder, Inf. Process. Manage. 51 (2)635

(2015) 1–15.

[21] A. Majid, L. Chen, H. T. Mirza, I. Hussain, G. Chen, A system for mining

interesting tourist locations and travel sequences from public geo-tagged

photos, Data & Knowledge Engineering.

[22] S. Jiménez, F. Fernández, D. Borrajo, Integrating planning, execution and640

learning to improve plan execution, Computational Intelligence Journal

29 (1) (2013) 1–36.

URL http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.

2012.00447.x/abstract

28

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2012.00447.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2012.00447.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2012.00447.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2012.00447.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2012.00447.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2012.00447.x/abstract

	Introduction
	Problem Formulation
	System Architecture
	minube Service
	Google Maps
	Tourist Plan Manager
	Automated Planner
	Viewer

	PDDL Representation
	Utility Model
	Travel Model

	Experimental Results
	Related work
	Conclusions and Future Work

