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Automated Planning

Given a planning task:

◮ A description of the initial state

◮ A description of the goals

◮ A description of a set of actions

A

B

C

D

Find a sequence of actions (a plan) from the initial state to a final

state in which the goal conditions fulfill
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Introduction

◮ Planning Community organizes the International Planning

Competition (IPC)

◮ Each IPC presents different tracks: optimal, temporal,

satisficing...
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Introduction

◮ Planning Community organizes the International Planning

Competition (IPC)

◮ Each IPC presents different tracks: optimal, temporal,

satisficing...

◮ IPC creates a perfect framework to fix the standard

◮ There is no single planner which is always the best planner for

all planning tasks!

◮ A set of planners could be aggregated to create a portfolio
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Portfolio Definition

Planning Portfolio

Given a set of base planners, {pl1, . . . , pln}, and a maximum

execution time, T , a planning portfolio can be considered as a

sequence of m pairs < pl1, t1 >, . . . , < plm, tm >, where pli ∈
{pl1, . . . , pln} and

∑m
j=1 tj ≤ T .
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Portfolio
Challenges

Portfolio

planners

benchmarks

configuration

metric

settings
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State-of-the-art
Planner Selection

Choose the planning algorithms to consider for the portfolio

◮ Select and combine heuristics and search algorithms:

FDSS [HRS+11], Cedalion [SSHH15], Uniform [SBGH12], . . .

◮ Domain-optimized portfolio planners: PbP [GSV14],

AGAP [VCK14]

◮ A group of independent planners: BUS [HDH+99],

MIPlan [NBL15], ArvandHerd [VNM+14], . . .
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State-of-the-art
Configuration

Configuration target: domain-independent (static), domain-specific,

instance-specific

◮ Domain independent configuration (static): FDSS, MIPlan,

Cedalion, Uniform, ArvandHerd, . . .

◮ Domain-specific configuration: PbP, AGAP

◮ Instance-specific configuration: BUS, AllPACA [MWK14]
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State-of-the-art
Metric & Settings

Criteria of planner selection and execution order

◮ Maximizes the coverage: FDSS, Cedalion

◮ Knowledge with round-robin: PbP

◮ Predictive models: BUS, AllPACA

◮ Sorted planners in function of their contribution: MIPlan
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Discussion

◮ Static Portfolio configurations are suboptimal

◮ Instance-specific configurations require an oracle

◮ Given a problem → which is the best planner and how much time

does it need

◮ Selected planners

◮ Many

◮ Low diversity

◮ Oracle

◮ Predictive Models are not perfect

◮ Uncorrelated shallow features

◮ BUS portfolio
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Objectives

1. Renew the idea of dynamic portfolios per instance

2. Find a diverse subset of planners with a multi-criteria approach

3. Characterize the planning task as a function of easily

computable features

4. Model the planner performance with machine learning

5. Exploit the predictive models in a portfolio configuration

6. Analyze the features in homogeneous problems test sets

7. Extrapolate the general approach to temporal planning
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Proposal
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Planner Filtering
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Filtering Criteria
Classical Metrics

Initial Idea: follow IPC criteria

◮ Coverage

◮ Time

◮ Quality

Time Quality

Coverage
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Time vs. Quality
Metric
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QT-Pareto Score Filtering
Our proposal

QT-Pareto dominance

A planner p1 gets a tuple 〈Q, T 〉 in a problem π , and a planner

p2, in the same problem, gets 〈Q′, T ′〉. The planner p1 domi-

nate p2 if and only if Q ≥ Q′ and T < T ′.

QT-Pareto Score

Planner p gets N
N∗ points, where N is the number of tuples

where p Pareto-dominates another planner, and N∗ is the num-

ber of different tuples in which planner p appears.
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QT-Pareto dominance
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Metric Scope
Filtering Method

◮ Problem

◮ Domain

◮ IPC Ranking

Problem

Domain

IPC Ranking
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Planner Selection in Parcprinter domain

Best planners per problem in terms of quality score
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Planner Selection
Domain Filtering Method

Planner Selection

Select a planner p as candidate when it gets the highest Score

Filtering in a domain.
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Experimental Setting
Evaluate planner selection

Training phase:

◮ Base planners: IPC-2011 and LPG-TD

◮ Benchmark domains: IPC-2011

Test phase:

◮ Time limit: 1800 seconds

◮ Memory limit: 4 GB RAM

◮ Benchmark domains: IPC-2014

Configurations:

◮ Portfolios: uniform time with arbitrary order

1. QT : portfolio using QT-Pareto

2. Q: portfolio using Quality

3. T : portfolio using Time

4. C: portfolio using number of solved problems (coverage)

5. OET : portfolio including 28 planners
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Results of the Planner Filtering
Quality - Static Portfolio Configurations

Domains QT Q T C OET

Hiking 19.14 19.38 18.56 19.12 18.17

Barman 19.64 17.65 19.14 19.38 16.74

Thoughtful 19.54 18.79 18.53 18.61 14.51

GED 19.17 18.52 19.29 19.08 18.28

Openstacks 19.66 19.99 19.50 14.88 15.44

Parking 18.99 19.00 16.99 9.72 17.64

Maintenance 15.53 16.84 13.89 16.46 15.00

Tetris 15.22 15.89 7.38 12.51 4.99

CityCar 13.50 12.69 7.82 8.68 5.99

Visitall 16.90 9.02 9.12 3.94 13.25

Childsnack 18.73 5.37 8.24 7.53 11.95

Transport 19.95 5.98 5.40 5.69 8.92

Floortile 17.00 3.43 1.88 3.43 4.81

CaveDiving 6.39 0.00 7.00 7.00 0.00

Total 239.35 182.56 172.73 166.03 165.68
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Analysis of the Filtering Results
Ranking, planners selection and diversity

Ranking Planner QT Q T C FD

1 LAMA-2011
√ √ √ √ √

2 FDSS-1
√ √ √

3 FDSS-2
√ √ √ √

4 FD-AUTOTUNE-1
√ √ √ √

5 ROAMER
√ √ √

6 FORKUNIFORM
√ √ √

7 FD-AUTOTUNE-2
√ √ √ √

8 PROBE
√ √ √

9 ARVAND
√ √ √ √

10 LAMA-2008
√ √ √

11 LAMAR
√ √ √ √ √

16 YAHSP2
√ √

17 YAHSP2-MT
√ √ √

20 MADAGASCAR-P
√ √

22 MADAGASCAR
√

24 LPG-TD
√ √ √ √

Total 28 11 9 10 22 12
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Predictive Models
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Feature Extraction I
Type, number, example

There are 114 features:

◮ PDDL (8): number of objects in the problem, . . .

◮ FD Instantiation (16): number of generated rules in the

translation process to SAS+ task, . . .

◮ Heuristics (16): FF heuristic in the initial state, . . .

◮ Landmark (14): number of landmarks included in the merged

landmark graph, . . .

◮ SAS+ (50): number of variables of the CG, . . .

◮ Fact Balance (10): number of times that a fact in the initial state

is deleted in the computation of the relaxed plan, . . .
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Feature Extraction II
Summary of the extracted features

Process Success Average (s.) Median (s.)

Tranlate (PDDL) 97% 5.98 0.36

Preprocess (FD & SAS+) 97% 1.10 0.06

Fact Balance 93% 0.73 0.03

Heuristics 87.54% 13.15 0.68

Landmarks 87.54% 1.72 0.24

Mercury 97% 0.01 0.00

Extra time 0.44 0.22

Total 23.11 1.60
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Modeling
Datasets

Total Instances

◮ 45 different domain descriptions: IPC-2006:2011 & Learning

IPC-2008:2011

◮ Input: Features (problems and domains) + performance data

(planner, solved, time)

Classification Task

◮ Input: Features + Planner

◮ Output: Solved / Unsolved task

Regression Task

◮ Input: Features + Planner

◮ Output: Time best solution
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Results Modeling

Each training algorithm using 10-fold cross-validation technique

Classification

◮ Accuracy

◮ Standard Deviation

Rotation Forest

Accuracy = 90.50 %

Regression

◮ Relative Absolute

Error

◮ Standard Deviation

Decision Table

Relative Absolute Error = 64.13%
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Configuration Strategies
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Strategy Selection
Problems with predictive models

How to transform the predictions of the best models into an actual

portfolio configuration.

Include the previous knowledge in different strategies:

◮ Not using any predictive model

◮ Using classification model

◮ Using classification and regression models

But, there are two problems...

✗ If all planners get a positive prediction

✗ If all planners get a negative prediction

Solution: to use the confidence to predict the positive class
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Estimated Number of Planners
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Strategy Selection
Our approximation for the IPC

◮ IBaCoP: QT-Pareto Score Filtering with uniform time
◮ IBaCoP2: Best N confidence strategy where N=5
◮ IBaCoP2-B5E: Estimated time to the previous selected planners
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Experimental Setting

◮ Time limit: 1800 seconds

◮ Time limit for feature extraction: 300 seconds

◮ Memory limit: 4GB RAM

◮ Test benchmark domains: IPC-2014
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Other Configurations
Baseline

Two baseline portfolios:

◮ Random 5 Planners (Rand): Run for 5 times from IBaCoP

◮ Best 5 Planners (Def): LAMA-2011, PROBE, FD-AUTOTUNE-1,

LAMA-2008 and FD-AUTOTUNE-2

Two planners:

◮ Mercury: Second planner in terms of quality

◮ Jasper: Second planner in terms of coverage
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Results
Quality

Domains Mercury Jasper Def Rand IBaCoP IBaCoP2 B5E

Hiking 18.96 18.17 18.78 18.07 19.25 19.63 19.63
Openstacks 19.64 18.76 19.25 17.23 17.35 17.38 17.37
Thoughtful 12.73 16.37 19.15 17.60 19.17 18.15 18.23
GED 19.46 17.95 16.40 14.22 17.31 17.70 17.70
Parking 18.14 17.22 18.18 12.47 17.89 18.16 18.17
Barman 14.61 18.97 17.17 14.10 16.79 16.85 16.87
Maintenance 5.72 10.79 12.52 15.27 16.45 16.21 16.25
Tetris 16.37 16.14 9.37 11.49 13.60 15.69 13.55
Childsnack 0.00 0.00 2.67 10.16 19.50 19.23 19.36
CityCar 4.10 11.03 4.96 9.77 11.43 14.36 12.57
Visitall 20.00 15.36 13.68 12.72 15.24 9.94 8.01
Transport 19.87 12.02 6.90 8.51 10.25 11.53 11.13
CaveDiving 7.00 8.00 7.00 7.00 6.30 7.00 7.00
Floortile 2.00 2.00 4.14 9.39 16.22 15.28 17.46

total 178.59 182.78 170.16 177.99 216.75 217.11 213.31
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Results
Coverage
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Selection of Planners
per Domains – Classification Model (IBaCoP2)

Number of times each planner has been selected in a domain
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Empirical Performance Modeling

Empirical Performance Modeling may encode knowledge as a

combination of the following capabilities:

◮ Domain discrimination

◮ Size discrimination

◮ Search space discrimination
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Search Space Discrimination

• Planning EPMs have been usually trained using a set of

available benchmarks

• Under these circumstances is very hard to isolate the effect of

different discrimination types
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Experimental Evaluation
For Learning EPMs from Homogeneous Problem Set

1. Generate 200 problems (D) with the same size Pp

2. Run the problems with each planner

3. Label the data with different cut-off (c)

4. Apply feature filtering criteria with c = 66%
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Execution time for the 200 problems
Barman domain with MERCURY planner
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Execution time for the 200 problems
Barman domain with MERCURY planner
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Results
Accuracy and AUROC in Barman domain with MERCURY

95% 66%

Algorithm Acc AUROC Acc AUROC

ZeroR 95.0 0.50 66.0 0.50

J48 94.5 0.50 68.0 0.62

NaiveBayes 77.0 0.68 67.0 0.71

RandomForest 94.0 0.67 66.5 0.65

RotationForest 95.0 0.51 70.0 0.64

The area under the curve (AUROC) is equal to the probability that a

classifier will rank a randomly chosen positive instance higher than a

randomly chosen negative one
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General Feature Analysis

◮ Landmark: number of edges

◮ Heuristic: Causal Graph, FF, Landmark-cut

◮ Fact Balance: Balance distortion, Balance Ratio
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Temporal Approximation

Handicaps:

◮ There are no features to temporal problems in the current state

of the art

◮ State-of-the-art planning EPMs mainly focus on classical

planning

Proposal:

◮ A new set of features which are specific to temporal problems

◮ Predict the performance of temporal planners
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Proposal
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Temporal Proposal
Planner Filtering

◮ Planners: 8 planners LPG-TD,POPF2, YAHSP2, YAHSP2-MT,

TEMPORAL FAST DOWNWARD, ITSAT, YAHSP3 and YAHSP3-MT

◮ Benchmarks: temporal problems from IPC 2002, 2004, 2006,

2008, 2011 and 2014
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Planning Task Characterization

There are 68 features from the

general procedure

Common

◮ PDDL

◮ SAS+

There are 71 new ones that are

specific to temporal planning

problems

New

◮ Temporal SAS+

◮ Temporal PDDL

◮ Temporal Fast

Downward
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Configuration Strategies

Classification Portfolio: select the planner with the best confi-

dence

Regression Portfolio: select the faster planner
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Experimental Setting

Benchmarks:

◮ Training: IPC 2006-2011

◮ Test: IPC 2014

Additional Comparatives:

◮ B4P: is a portfolio with always best planners

◮ LPG-td: is the best planner in terms of coverage

◮ Yahsp2: is the best planner in terms of quality

◮ VBS: is the virtual best solver
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Coverage and Time Score Results

Classification Regression LPG-td Yahsp2 B4P VBS

TMS 18 18 0 0 0 18
Turn&Open 12 17 0 0 15 17
Storage 17 17 17 9 17 17
Driverlog 7 13 13 9 12 13
Floortile 20 20 20 8 20 20
MatchCellar 19 20 0 0 20 20
MapAnalyser 10 7 7 20 20 20
RTAM 0 20 20 20 20 20
Satellite 12 20 20 20 20 20
Parking 14 20 20 20 20 20

Coverage 129 172 117 106 164 185
IPC-Score 91.8 129.3 62.1 86.2 72.5 185
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Conclusions

◮ The multi-criteria planner filtering method achieves a good

selection without reducing diversity
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Conclusions

◮ The multi-criteria planner filtering method achieves a good

selection without reducing diversity

◮ The created features properly characterize the planning tasks

◮ The predictive models based on these features have good

results

◮ The configuration strategies take advantage from the

predictive models

◮ IBaCoP2 shows benefits over IBaCoP

◮ The portfolios achieve remarkable results

◮ First Temporal Approximation

◮ The relevance of each feature is not dominant across different

domains and planners
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Future Work

◮ The automated selection of the number of planners per

planning task

◮ Incorporate the synergy between different automated planners

for the portfolio configuration

◮ Incorporate new features to regression tasks

◮ Evaluate a portfolio in homogeneous problems sets
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Publications

◮ Tomás de la Rosa, Isabel Cenamor and Fernando Fernández, ‘Performance Modelling of
Planners from Homogeneous Problem Sets’. In the 27th International Conference on
Automate Planning and Scheduling 2017.

◮ Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández, ‘The IBaCoP planning
system: Instance-based configured portfolios’, Journal of Artificial Intelligence Research
(JAIR) N 56.

◮ Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández, ‘Learning Predictive
Models to Configure Planning Portfolios’, Workshop Planning and Learning ICAPS-2013

◮ Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández, ‘Mining IPC-2011 Results’,
Workshop on International Planning Competition ICAPS-2012
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Awards
in the International Planning Competition

⋆ Winner at Sequential Satisficing track

⋆ Runner up at Sequential Satisficing Multi-core track
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Thank you for your attention!
Creating Planning Portfolios with Predictive Models

Isabel Cenamor

Advisors: Tomás de la Rosa and Fernando Fernández
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Algorithm for computing the positive and negative balance footprints
for a layer of the RPG.

◮ RP_init Minimum, average and variance of the number of times that a fact in the initial state

is deleted in the computation of the relaxed plan. (B(p, π
±
s0

), ∀p ∈ S) . (3)

◮ RP_goalMinimum, average and variance of the number of times that a goal is deleted in the

computation of the relaxed plan. (B(g, π
±
s0

), ∀g ∈ s⋆)(3)

◮ Ratio_ff Ratio between the value of the max and FF heuristic. This proportion shows the
idea of parallelization of the relaxed plan.

◮ RP Balance Ratio Aggregate the value of each layer multiplying it by a weight that represents
the proportion of actions that appear in each particular layer of the occurrences in which a
fact has a positive balance.∑

layers(RPG)

i=1

|Ai−1|

|A|
× fp+

i

◮ RP Unbalance Ratio Aggregate the value of each layer multiplying it by a weight that
represents the proportion of actions that appear in each particular layer of the occurrences in

which a fact has a negative balance.
∑

layers(RPG)

i=1

|Ai−1|

|A|
× fp−

i

◮ Balance Distorsion Aggregate the value of each layer for the distorsion of unbalanced facts.∑
layers(RPG)

i=1
dist_fpi
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