
Learning Predictive Models to Configure Planning Portfolios

Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
icenamor@inf.uc3m.es,trosa@inf.uc3m.es, ffernand@inf.uc3m.es

Abstract

One of the latest advances for solving classical planning prob-
lems is the development of new approaches such as portfolios
of planners. In a portfolio, different base planners are run
sequentially to solve a problem. Therefore, the main chal-
lenge of a portfolio planner is to define what base planners
to run, in what order, and for how long. This configuration
can be created manually or automatically, for instance, using
machine learning techniques. In this work, a dynamic portfo-
lio planner is described which, opposite to previous portfolio
planners, is able to adapt itself to every new problem. The
portfolio automatically selects the planners and the time ac-
cording to predictive models. These models estimate whether
a base planner will be able to solve the problem and, if so,
how long it will take. The predictive models are created with
machine learning techniques, using the data of the last Inter-
national Planning Competition (IPC). Prediction capability of
the models depend on the features extracted from the IPC re-
sults for each problem. In this work, we use a group of fea-
tures extracted from the SAS+ formulation of such problems.
We define different portfolio strategies, and we show that the
resulting portfolios provide an improvement when compared
not only with the winning planner of the last competition
(LAMA), but also with less informed portfolio strategies.

Introduction
The International Planning Competition (IPC) is an excel-
lent initiative to foster the study and development of auto-
mated planning systems. Since the event takes the shape of
a competition with different tracks, after the event, a plan-
ner is selected as winner of each track. Different planning
systems have dominated the competition in different years.
However, one of the main invariants of the competition is
that there is not a single planner which is always better (nor
at least equal) than the other planners for every problem.
This means that, although there is a planner which, follow-
ing the quality metrics of the competition, can be considered
the best one, we can always find some problems in different
domains where other planners outperform the global winner.

The idea of using a set of base systems to generate so-
lutions more accurate than the ones obtained separately is
not new in Artificial Intelligence. For instance, in ma-
chine learning, meta-classifiers use different base classifier
systems to increase the coverage of the representation bias

of the resulting classifier (Dietterich 2000). In problem
solving, portfolios of search algorithms have also demon-
strated that can outperform the results of single search strate-
gies (Xu et al. 2007).

In automated planning, the portfolios of planners have
taken the interest of the community. A portfolio planner
can be defined as a set of planners with a selection strat-
egy. Such selection strategy has to define three main el-
ements: (1) what sub-set of planners to run, (2) how
long to run each planner? and (3) in what order. In
this work we propose to answer the previous questions us-
ing Machine Learning. Specifically, we use the results of
the sequential satisfying track of the IPC 2011 to construct
predictive models about the capability of the base planners
to solve planning problems -first question-, as well as the
time that they require -second question. The order in which
the planners are executed is given by the confidence of the
predictive models obtained. With those predictive models,
we are able to define a different portfolio configuration for
each planning problem, similarly to previous works about
the use of portfolios in search, but a novelty in automated
planning where previous works always have focused in static
portfolios (Gerevini, Saetti, and Vallati 2009; Gagliolo and
Schmidhuber 2006). From the machine learning point of
view, defining an accurate set of features to characterize the
planning problem is critical. Specifically, we use data ex-
tracted from three different sources. Firstly, the IPC-2011
software (López 2011) contains several packages, which fa-
cilitates testing planners, compare their performance and
obtain reports of the results. IPCReport is the package in
charge of providing access to the data generated during the
competition, so we used this software to extract the results
of every planner in every problem of the competition. Sec-
ondly, some basic features can be obtained from the PDDL
problem files, like the number of literals, objects or goals of
a problem, which gives an idea of the size of the problems.
Lastly, additional features are extracted from the graphs in-
duced by the SAS+ formalism (Backstrom and Nebel 1995;
Helmert 2009) in order to partially recognize the differences
between problems of similar size (Cenamor, de la Rosa, and
Fernández 2012).

We propose to evaluate the resulting portfolio estimating
the behavior that we can expect in the future. For this perfor-
mance estimation we have to consider whether the problems



belong or not to one of the domains used during the learning
of the predictive models. Therefore we suggest to use two
evaluation strategies derived from the machine learning lit-
erature, split and leave-one-domain-out, as will be explained
later.

The remainder of the paper is organized as follows. In
the next section we present the predictive models of plan-
ner performance, where we will explain the learning process
followed to obtain such models, describing the features that
we use in this work. Following that, we describe how we
create the portfolio, and the different strategies to configure
the portfolio. Afterwards, we describe the empirical evalu-
ation of the portfolios. The paper finishes with the related
work, the conclusions and the future research lines.

Learning Predictive Models of Planner
Performance

Constructing the planning portfolio and learning the predic-
tive models is described from a Data Mining perspective, as
shown in Figure 1. Data Mining is a process of discovering
implicit knowledge from determinate data. This process
may contain different phases depending on the goals. In
our case, we have defined the data mining goals as the
creation of two predictive models. First, whether a planner
will be able to solve a problem, and if so, what will be the
time required to compute the best plan. The first problem
is a classification task, where the predicted attribute is a
Boolean: the planner solved the problem or not. The second
problem is a regression task, where the output belongs to
the positive real numbers, but restricted to the time limit
given to the planners (i.e., 1800 seconds in IPC). The
reason why we have chosen these two tasks is two-fold.
On the one hand, we want to characterize under which
conditions a planner will succeed, so this characterization
will support a better knowledge of the planners and their
possible improvement (Cenamor, de la Rosa, and Fernández
2012). On the other hand, and from a more engineering
point of view, we want to obtain predictive models that can
be used for the selection of planners when configuring the
portfolio-based planner.

The first part of the work flow of the mining process is the
gathering of the features from the planning problems. Given
the problems of the last IPC (IPC-2012), a subset of features
is extracted using the software developed by the organizers.
The report of this software presents a lot of variables to prin-
cipal observations about the execution of the planners for a
given problem and domain. Among all these variables we
used the name of the planner, the domain, the problem, a list
of a time solutions and a list of a quality solutions. These
two last variables represent all the solutions for a problem
in a given planner sorted by appearance order. From all the
data of the IPC 2011, we used the problems of the sequen-
tial satisfying track. We got 7560 instances, corresponding
to the execution of 27 planners in a total of 20 problems for
14 domains. There are 3837 positive instances, i.e., execu-
tions returned a plan, and 3723 negative instances, i.e., no
plan was returned from such execution.

IPC 2011
SVN

Repository

2011
Dataset
Results

IPC 2011
Problems 

And
 Domains

(PDDL)

PDDL 
TO

 SAS+

SAS+
Problems

Feature 
Generation

Training 
Data

Training 
Data

DATA
PREPARATION

Predictive
 model

Predictive
 model

MODELING

EVALUATION

Can a planner 
solve a problem?

What is the
time of the best
plan obtained by
a planner in a given
problem?

IPC 2011
Reporting

Feature 
Extraction

DATA 
UNDERSTANDING

Problem
And 

Domain
Features

Data
Integration

Training 
Data

DEPLOYMENT

1. Can a planner 
solve a problem?

2. What is the
time of the best
plan obtained by
a planner in a given
problem?

BUSINESS
UNDERSTANDING

Feature 
Selection

Feature 
Selection

Instance
Selection

Model
Construction
(Regression)

Model
Construction

(Classification)

Figure 1: Data work-flow of the mining process following
CRISP-DM (Chapman et al. 2000) methodology

Besides, we used the problems of this track to create some
features that can characterize the problems (without con-
sider their solutions). In order to obtain a good charac-
terization we used features extracted from the PDDL files
and a set of elaborated features generated from the problem
translation to the SAS+ formalism and its induced graphs,
i.e., causal graphs and domain transition graphs. The ba-
sic features (from PDDL) are typically features of the plan-
ning problem: number of objects defined in the problem,
number of instantiated predicates in the initial state (liter-
als) and number of instantiated predicates that are true in
the final state (goals). The SAS+ formalism is an alterna-
tive representation to STRIPS (Backstrom and Nebel 1995;
Helmert 2009). Using this formalism, a problem instance
can be represented in a structured way using two types of
graphs: The first is the causal graph (CG), which is a graph
that captures the causal dependencies between the state vari-
ables of a given problem. The second is the domain tran-
sition graph (DTG) which encodes the allowed transitions
between different values of a variable. In a problem there is
a DTG for each state variable. For more details see (Helmert
2006).

We have used the LAMA planner (Richter and Westphal
2010) to pre-process and generate all the graphs. We recall
that in the causal graph, the high-level variables are the vari-
ables for which there is a defined value in the goal. Although
the common definition of the causal graph does not consider



the edges as weighted, LAMA computes the edge weights of
the causal graph as the number of instantiated actions that
induced each edge. We also consider these weights for com-
puting our features. We have extracted a total of 47 features
for each problem, which are summarized next.

Feature Description
For the CG we generated features in four categories: (1) gen-
eral, which includes the direct information from the graph;
(2) ratios, which represents interesting proportions that may
be equal across problems of different size; (3) statistical,
such as the average, maximum and the standard deviation
of the entire graph; and (4) high-level statistical, the same as
before but only considering the high-level variables.

The general variables of a CG are four: the number of
variables, the number of high-level variables, the number of
edges and the sum of weights of the edges. The ratios are
four: The first is the ratio between the total number of vari-
ables and the total edges. The second is the ratio between the
sum of the weights and the number of variables. The third is
the ratio between the number of high-level variables and the
total number of variables. And the last is the ratio between
the number of high-level variables and the total number of
variables.

The statistical information of a CG is used to characterize
the structure of the causal graph. We compute the average,
the maximum and the standard deviation of the following
four values: The first is the number of incoming edges for
each variable. The second is the sum of the weights of the
incoming edges for each variable. The third is the number
of outgoing edges for each variable. And the last is the sum
of the weights of the incoming edges for each variable.

The statistical information of high-level variables is used
to encode the structure for the variables involved in the prob-
lem goals. We compute the same as the statistical informa-
tion of the CG of the following two values: the number of
incoming edges for each variable, and the sum of the weights
of the incoming edges for each variable.

For the DTG we generated features in two categories: (1)
general, aggregating the relevant properties of all graphs and
(2) general aggregated features and some statistics over all
graphs.

The general variables of the DTG are three: the number
of variables, the number of edges and the sum of weights
of the edges. The statistical information of the DTG is used
to characterize the structure of the whole domain transition
graph. In this case, we compute the same statistical infor-
mation as for the CG, but in this case when we compute the
average, it is the average of all the graphs. In the case of
standard deviation, we compute the standard deviation of all
the graphs and the same with the maximum.

Once we have read the SAS+ problem, the computation
time to extract all those features is inconsiderable because
we only realize sums, averages and standard deviation com-
putations.

Data Preparation
After the extraction of the features, data preparation is typi-
cally the following mining step. In this phase, we create the

output features for learning the models. The first task is to
learn whether a planner will be able to solve a problem. This
problem is a classification task with a binary class. This at-
tribute is set to “yes” if there exists at least one solution of
the problem; otherwise it is set to “no”. In this case, the
quality of the solution is not relevant.

The second task is to learn the time that a given planner
expended in a given problem. This attribute is a numerical
attribute in the range [0..1800], limits defined by the IPC
competition. In this case, we have eliminated all the in-
stances where the a planner was not able to find a solution,
i. e. where time and quality vector are missing.

Data Modeling
The data modeling is divided into two parts as defined
above: generating a classification model and generating
a regression model. The classification model is a de-
cision tree created by J48 algorithm (Quinlan 1993), al-
though we performed tests with other algorithms like de-
cision rules (PART) (Frank and Witten 1998), Support Vec-
tor Machines (SMO) (Cristianini and Shawe-Taylor 2000),
and IBK (Witten and Frank 2005) for different values of
k (1, 3, 5). The implementation of these algorithms is pro-
vided by WEKA (Witten and Frank 2005), and they are used
with the pre-defined parameters.

The regression model is created by instance-based learn-
ing (Briscoe and Caelli 1996) (IBK) with k = 3. However,
like in the classification case, we used other algorithms like
the decision trees for regression problems (M5Rules) (Wang
and Witten 1996), IBK (Witten and Frank 2005) for different
values of k (1, 5) and Support Vector Machines in regres-
sion (SMOreg) (Shevade et al. 2000). The implementation
of these algorithms is also provided by WEKA.

Evaluation
We follow two different evaluation mechanisms to estimate
the behavior of the models in different circumstances. The
first way to evaluate the performance of a model is to split
the available data in two sets: a training set and a test set.
In our case, we divide the problems in two sets depending
on its identifier: even or odd 1. We constructed two mod-
els: one with even problems, which is then evaluated with
the odd ones and vice versa. The resulting is the sum of
both processes. In this way, we can evaluate how the model
constructed will behave in previously unseen problems.

The second evaluation mechanism permits to evaluate
how the models will behave in problems of unseen do-
mains. The approach is based in the leave-one-out evalu-
ation method, which in machine learning can be seen as a
cross-validation 2 where k is set to the number of available

1The problems of the competition are created in increasing dif-
ficulty, so separating them in this way almost ensures that the dif-
ficulty of the problems in the two sets generated is very similar, as
the results will show.

2Cross-validation (Browne 2000) permits to estimate the clas-
sification accuracy (percentage of times that the model outputs the
expected class) of a classifier in the future, or the predicting capa-
bility (relative absolute error of the predicted value respect to the



data. In our case, the method is a cross-validation where
the data is not separated in folds randomly, but per domains.
Therefore, with this approach we create as many folds as
domains and, each time, we build a predictive model with
the data from all the domains except one. In this way we
estimate the behavior of the learned models in previously
unseen planning domains.

Data Exploitation
Table 1 shows how to use the predictive models learned (as
shown in Section ) to build a portfolio of planners.

Predictive Models Based Portfolio
• Given

1. An input vector, d, which represents all the relevant
features of a planning domain

2. An input vector, pr, which represents all the relevant
features of a planning problem

3. A set of planners P = {pl1, . . . , pln}
4. A maximum execution time, t
5. A predictive Model C(pl, d, pr)→< s, c > that for

any planner, pl, domain d, and problem, pr outputs
whether pl will solve problem pr, s, and what is the
confidence, c, of such estimation

6. A predictive Model R(pl, d, pr) →< t, e >
that for any planner, pl, domain d, and problem,
pr, outputs the estimated time that pl will re-
quire to find the best solution of pr, and what
is the standard error expected in that estimation

1. eligible = ∅
2. for i = 1 to n do

(a) < si, ci >= C(pli, d, pr)

(b) if si == true then eligible = eligible ∪ pli

3. For j = 1 to ‖eligible‖, < tj , ej >= R(plj , d, pr)

4. Use the set eligible and the predictive estimations,
< sj , cj > and < tj , ej >, to create the portfolio,
following any selection strategy

5. Execute the portfolio

Table 1: Algorithm to create a portfolio based on the predic-
tive models.

The method assumes that it receives all the relevant fea-
tures of the planning problem in a given domain encapsu-
lated in vectors d and pr. It also receives the set of planners,
the maximum execution time, and the predictive models.

Then, for each of the n planners, the algorithm obtains
from the classification model the estimation of their capabil-
ity to solve the problem. All the planners whose answer is

expected one) of a regression model. A cross-validation splits the
data randomly in k groups, (k−1) used for training the model and
the rest to test the learned model. This process is repeated k rounds.
The result of this process is the average of the results obtained by
all the models computed in the k rounds.

positive are included in the set of eligible planners. For all
the planners in eligible the estimated time to be run is also
estimated with the regression model. The output of the algo-
rithm is the configuration of the portfolio, i.e. a list of plan-
ners with an associated run time. The portfolio is created
using different strategies, which are defined in the following
section. In case of the sum of the times of this list are larger
than the limit t, the list is truncated.

Building strategies with predictive models
We have evaluated various strategies for the configuration of
the portfolio. The list of the strategies is ordered depending
on the use that they make of the knowledge provided by the
prediction models. The first one does not use such knowl-
edge at all, while the last one uses both classification and
regression models.

Equal Time (ET): This strategy does not use the predictive
models. It assigns equal time for each planner (uniform
strategy). This means that, if we have 27 planners (all
the participants of IPC 2011), all the planners will run for
1800/27 = 66.67 seconds.

Best Confidence Estimation (BCE): This strategy uses
the classification model. It selects the planner that ensure
that the problem will be solved, but only the planner with
the maximum confidence. If the classification model es-
timated that no planner is be able to solve the problem,
it chooses the planner with a lower confidence of fail.
In case of a confidence tie, it chooses all the planners in
the tie. The execution time is also distributed uniformly
among all the planners selected.

Best 5 Confidence (B5C): This strategy also uses the clas-
sification model. It selects the 5 planners with the highest
confidence of solving the problem. The run time is as-
signed uniformly to each planner (360 seconds).

Best 10 Confidence (B10C): This strategy is equivalent to
the previous one, but selecting 10 planners instead of 5,
and therefore, assigning 180 seconds to each planner.

Best 5 Regression (B5R): This strategy uses the classifica-
tion and regression models. It follows the same procedure
than B5C to select 5 planners. Then, it estimates the total
time required by the planners as the sum of the predicted
run time of each planner. Since this sum is likely to be dif-
ferent from the maximum execution time (1800 seconds),
the time assigned to each planner is a linear proportion
with respect to the total time.

Best 10 Regression (B10R): This strategy is equivalent to
B5R, but selecting 10 planners.

Experimental Results
In this section we explain the results of the models from their
predictive capability point of view. The predictive power of
the models is relevant because they give clues about wheter
the portfolio strategies will success or fail. Then, we show
and analyze the results of exploiting the models in the dif-
ferent portfolio strategies.



Estimated Performance of the Models Learned
Predictive models do not usually behave perfectly, i.e. a
100% of success in classification nor an error of zero in re-
gression can be achieved. In fact, every data-set has a max-
imum performance, which is typically called the Bayesian
optimal. The Bayesian optimal is produced by two reasons.
The first one is noise and/or mistakes in the data; the second
one is a lack of information which is required to improve
the predictions. The performance of the models learned is
shown in Tables 2 and 3 for different classification and re-
gression algorithms tested, respectively. We show results
following two different evaluation strategies, the classical
split validation and leave-one-domain-out (both described
above).

Data set Split Validation Leave One Domain Out
J48 88.75 (1.05) 59.14 (12.13)
IBk -K 1 88.67 (1.29) 60.83 (10.13)
IBk -K 3 87.63 (1.07) 60.58 (11.76)
IBk -K 5 88.58 (1.07) 61.95 (11.10)
SMO 72.48 (1.58) 61.34 (10.10)

Table 2: Classification accuracy and standard deviation for
predicting planner success in the sequential satisfying track

The estimated performance of the classification models
following the split validation is very high (close to a 90% of
classification success). It is important to highlight that the
data set is well-balanced in the class distribution: there are
3837 positive instances and 3723 negative ones, so a default
classifier (i.e., a base classifier that always predicts the ma-
jority class) would obtain a performance of 50.75, while J48
obtains 88.75. Comparing the different algorithms tested,
the best result is obtained using decision trees (J48), but
IBk obtained similar accuracy. These results reveal that this
model is good to predict the planner success for problems
of already seen domains and will be very useful to build the
portfolios under this scenarios (as will be described later).

We also have performed a brief automated feature selec-
tion process prior the generation of the models using the de-
fault parameters in WEKA. However, the process is very
aggressive and eliminates most of the features, all except
the planner and if the planner solved the problem or not
(the class). The results with only those features are worse
than with all the features, 72.06 ± 1.52 independently of
the learning algorithm. We could perform a more extensive
evaluation with additional feature selection processes and/or
algorithms. However, we will show later that the models ob-
tained at this point are good enough to build the portfolios.

In the case of the leave one domain out evaluation pro-
cess, the results are worse, and a maximum performance of
61.95 is achieved with IBK. This result is 26.8 points worse
than when evaluating with split validation, but still 10 points
higher than the default classifier. The reason is that it is
much more difficult to generalize to problems in new do-
mains than to new problems in the same domains. In other
words, the training data gathered from the 14 domains of the
IPC 2011 is not a representative set of all the possible do-

mains that can be modeled in PDDL. Anyway, we will show
later that this result is promising.

Table 3 shows the results of different regression algo-
rithms evaluated. The error metric used is the Relative Ab-
solute Error (RAE), because it is independent of the range
of values of the estimated function. The results obtained are
around a 63%, which means that if, in average, the execu-
tion time were 100, in average we should make a mistake of
63 seconds. We will also show later that this value is good
enough to provide successful estimates in the portfolios.

Algorithm Split validation Leave one Domain Out
M5Rules 73.66 (3.61) 985.64 (2200.93)
IBk -K 1 67.57 (4.07) 93.66 (23.38)
IBk -K 3 62.98 (3.12) 85.96 (22.26)
IBk -K 5 64.39 (3.00) 85.57 (19.21)
SMOreg 69.50 (2.87) 907.32 (2620.74)

Table 3: Relative absolute error and standard deviation of
predicting the time that the planners will invest in finding
the first, median and best solution in the sequential satisfying
track

The best solution in all the cases is the algorithm IBk with
k = 3 and k = 5 in split validation and leave one domain
out. The model with lower error will be used in the portfo-
lios. We follow a pessimistic approach, and the relative error
is used in the regression strategies to assign the time. I.e. if
the regression model estimates a run time of 100 seconds,
we assign 163.

Performance of the Portfolios
In this section we evaluate two different generalization sce-
narios. The first one evaluates how a portfolio learned from
some problems in different domains generalize to new prob-
lems in the same domains, or what we called above, the
split evaluation. The second one evaluates how a portfolio
learned from some problems in some domains generalize to
problems in new domains. In both cases, problems used for
training were not used in the test.

Table 4 shows the result of different portfolio strategies
for the split evaluation. It also includes the results of LAMA-
2011 and the best possible strategy (BS), both to have a
reference for comparison. For each strategy we show the
number of solved problems (S), the number of plans that
have better quality than LAMA-2011 (+), and the number of
problems that have worse quality than LAMA-2011 (-). The
number of problems solved by BS is the number of prob-
lems solved in the track; therefore it is an upper bound for
any conceivable portfolio configuration since we did not in-
troduce new planners for our experiments. We can see that
the best possible strategy would solve 267 problems and that
181 of them could have a better quality than the reported by
LAMA-2011. That confirms there is a considerable room for
improving the performance of the winner of the sequential
satisfying track of IPC.

The less informed strategy, ET, executes every planner for
a fixed time. This strategies shows two important issues: on



ET BCE B5C B10C B5R B10R Lama BS
S + - S + - S + - S + - S + - S + - S S +

Barman 20 19 0 20 12 8 20 18 0 20 19 0 20 19 0 20 19 0 20 20 20
Elevators 20 16 2 20 14 6 20 17 2 20 20 0 20 16 2 20 19 0 20 20 20
Floortile 8 4 4 8 4 0 8 4 1 8 4 0 8 4 2 8 4 0 6 9 5
Nomystery 15 7 0 18 9 0 17 8 1 17 8 0 18 9 1 17 8 0 10 19 10
Openstacks 20 2 18 20 3 6 20 5 6 20 3 9 20 4 7 20 3 11 20 20 17
Parcprinter 20 0 20 20 8 2 20 8 1 20 11 0 20 8 1 20 11 0 20 20 11
Parking 12 3 16 20 0 20 20 1 16 20 4 12 20 1 16 20 4 13 20 20 9
Pegsol 20 0 8 20 0 2 20 0 2 20 0 2 20 0 2 20 0 2 20 20 0
Scanalyzer 18 2 14 19 9 5 18 8 4 17 8 6 18 8 6 18 10 3 20 20 13
Sokoban 17 5 10 18 2 6 19 4 1 18 4 2 19 4 1 19 5 1 19 19 6
Tibybot 16 5 9 18 6 5 19 6 7 18 7 4 17 4 7 17 6 4 16 20 13
Transport 20 9 11 20 11 9 19 10 8 20 14 6 19 10 8 20 14 6 19 20 18
Visitall 20 20 0 20 18 1 20 20 0 20 20 0 20 20 0 20 20 0 20 20 20
Woodworking 20 9 0 20 16 2 20 18 0 20 19 0 20 18 0 20 19 0 20 20 19
Total 246 101 112 261 112 72 260 127 49 258 141 41 259 125 53 259 142 40 250 267 181

Table 4: Comparison of the six portfolio strategies in split evaluation. Columns labeled with “S” show the number of problems
solved in each domain. Columns labeled with “+” show the number of problems solved with plans of better quality to the ones
reported by LAMA-2011. Columns labeled with “-” show the number of problems solved with worse quality than LAMA-2011.

the one hand it confirms that a portfolio is an interesting ap-
proach, since it is close to the winner of the competition. On
the other hand, it shows that over 87, 85% of the problems
are solved in less than 70 seconds (this strategy splits the
time in 27 slices of 66.67 seconds).

The classification based strategies (BCE, B5E and B10C)
shows that the classification models are useful, and they can
solve over 96 % of the problems that can be solved (the limit
is 267 problems). Classification based strategies solve more
problems than the ET strategy. The use of the regression
models to assign the execution time to each planner does
not increment the number of problems solved over using
only the classification models, and regression based strate-
gies (B5R and B10R) solve a similar number of problems.
The best portfolio of the competition, Fast Downward Stone
Soup 2 (fdss-2), solved less problem than all the strategies:
Fdss-2 solved 221 problems, and we solved in the worse
case 258 problems.

Although quality is not estimated directly by the predic-
tion models, the regression based strategies show that the
regression models permit to maintain the plan quality: given
that the models predict the time to obtain the best solution,
the regression models are accurate to compute an amount of
time enough to achieve high quality solutions. All the in-
formed strategies are better than ET because the difference
in number of problems solved is at least 12 problems more,
but they also improve the quality of the solutions. For in-
stance, B5C improves the quality in 125 problems, and only
decreases the quality in 49. The regression based strategy,
B10R, improves the quality of 142 problems and decreases
the quality in only 40. However, that is not an improvement
over the classification based portfolios, B5C and B10C, re-
spectively.

Those results mean that there is not one strategy perfect
for all the criteria (number of problems solved and qual-
ity). With these results, the better strategy is B10R because it
solves 13 problems more than ET and this strategy improves
more plan qualities.

Table 5 follows the same structure as Table 4, but for the
leave-one-domain-out evaluation mechanism: it shows for
each portfolio strategy the number of problems solved, and

the number of problems with better or worse plan quality
than LAMA-2011, respectively. Like in the results of the
split evaluation, the best possible results are shown in the
last column.

The best strategy with knowledge is B10C. It solves 4
more problems than the uninformed strategy ET, and the
same number of problems as LAMA-2011. Comparing with
the best portfolio of the competition, fdss-2, our technique
obtained 29 problems more (fdss-2 solved 221 problems).
These results mean that the planner combination is a good
approximation for improving a single planner. But the re-
sults are worse than the split validation because the error in
classification is higher than in the split validation.

The bad results only affect significantly to two domains:
Nomystery and Transport, where 3 and 7 problems are not
solved by the portfolio strategies, respectively. In the other
domains, the difference is only of one or two problems. In
some domains, the two evaluations (split and leave one do-
main out) obtain the same result (20 problems for domain).
This domains are Barman, Elevators, Openstacks, Parking,
Pegsol, Visitall and Woodworking. This group of domain
suppose the 57.14 % the problems of the last competition
and it is not a insignificant number, however this group is not
enough. However this result is very significantly because the
model do not have some any information about the domain
and this task is difficult to realize.

The analysis of planning speed is not included because the
created strategies focuses in obtaining the best plan for each
problem in the maximumn time available (1800 seconds).
If we would like to reduce the time where the best solution
is obtained, we should create another strategies focusing in
such objective.

Selection of Planners
The selection of the planners is performed automatically in
the classification based portfolio strategies: for each prob-
lem, the classification based strategies decide a subset of
planners to include in the portfolio. In Figure 2 we report the
planners chosen by the B5C strategy in the split evaluation.
In the x axis we show the domains used in the experiments
and in the y axis we list the planners that the portfolio can



ET BCE B5C B10C B5R B10R Lama BS
S + - S + - S + - S + - S + - S + - S S +

Barman 20 19 0 20 19 0 20 19 1 20 19 0 20 18 0 20 18 0 20 20 20
Elevators 20 16 2 20 16 1 17 14 4 20 18 0 18 15 3 20 18 1 20 20 20
Floortile 8 4 4 9 5 0 6 0 2 9 5 0 6 0 0 9 5 1 6 9 5
Nomystery 15 7 0 17 7 2 13 4 4 15 4 2 13 4 5 15 5 1 10 19 10
Openstacks 20 2 18 1 1 19 20 3 17 20 3 16 15 1 19 15 2 16 20 20 17
Parcprinter 20 0 20 20 11 0 20 5 12 20 11 0 20 5 12 20 11 0 20 20 11
Parking 12 3 16 20 4 12 20 2 12 20 4 12 20 2 13 20 4 15 20 20 9
Pegsol 20 0 8 20 0 2 20 0 2 20 0 2 20 0 2 20 0 2 20 20 0
Scanalyzer 18 2 14 17 8 4 17 4 6 17 4 7 18 4 6 17 4 6 20 20 13
Sokoban 17 5 10 19 5 1 18 1 7 19 4 1 18 2 6 19 s 5 1 19 19 6
Tibybot 16 5 9 18 5 4 19 6 3 17 4 7 15 3 7 16 3 7 16 20 13
Transport 20 9 11 13 12 7 16 8 7 13 10 7 13 8 9 13 8 10 19 20 18
Visitall 20 20 0 10 7 13 10 7 13 20 20 0 10 7 13 20 20 0 20 20 20
Woodworking 20 9 0 20 19 0 20 19 0 20 19 0 20 19 0 20 19 0 20 20 19
Total 246 101 112 224 119 65 236 92 90 250 125 54 226 88 95 244 122 60 250 267 181

Table 5: Comparison of the six portfolio strategies in leave-one-domain-out evaluation. Columns labeled with “S” show the
numbers of problems solved in each domain. Columns labeled with “+” show the number of problems solved with plans of
better quality to the ones reported by LAMA-2011. Columns labeled with “-” show the number of problems solved with worse
quality than LAMA-2011.

use. The dot size indicates the number of times B5C selects
a particular planner in a given domain. Given that we have
20 problems per domain, the maximum value is 20. In the
case that B5C selected always the same planners for a given
domain, there would be five points with the maximum size
in the row corresponding with that domain.

The only planners that were never selected are ACOPLAN
and ACOPLAN2. The most common selected planners are
FD-AUTOTUNE-1 and RANDWARD. LAMA-2011 is not able
to solve all the problems, and for some of the solved ones,
it does not provide the best solution. Therefore, combining
planners is a requirement to achieve the best results. Inter-
estingly, B5C did not select LAMA-2011 for all the domains.

acoplan
cbp2

fdss-1
lamar
probe

yahsp2
acoplan2

cpt4
fdss-2
lprpgp

randward
yahsp2-mt

arvand
dae_yahsp
forkuniform

madagascar
roamer

brt
fd-autotune-1

lama-2008
madagascar-p

satplanlm-c
cbp

fd-autotune-2
lama-2011

popf2
sharaabi

w
o
o
d
w

o
rkin

g
visita

ll
tra

n
sp

o
rt

tid
yb

o
t

so
ko

b
a
n

sca
n
a
lyze

r
p
e
g
so

l
p
a
rkin

g
p
a
rcp

rin
te

r
o
p
e
n
sta

cks
n
o
m

yste
ry

flo
o
rtile

b
a
rm

a
n

e
le

va
to

rs

Figure 2: The planners selected by B5C for each domain

Related Work
Howe et al. (Howe et al. 2000) described one of the first
portfolio planners. They implemented a system called BUS
that runs only 6 planners in portions of time and in circu-
lar order until one of them finds a solution. In this port-
folio, the planners are sorted following the estimation pro-
vided by a linear regression model of their success and run
time. They used only 5 features to represent the problems
extracted from the PDDL description, while we character-
ize the problems with 47 features extracted from different
sources, which has demonstrated that improve prediction ca-
pabilities (Cenamor, de la Rosa, and Fernández 2012). As in
our case, the configuration of the portfolio can be different
for different problems in the same domain.

Another portfolio (Gagliolo and Schmidhuber 2006) de-
fines the same configuration for all the problems in the same
domain. Each algorithm is run in parallel and dynamic
context-sensitive restart policies for SAT solvers are imple-
mented. Another difference with our work is that they used
SAT solver executions to learn the difficulty of the problems
and split the time in between all SAT solvers, while we cre-
ate models to predict planner performance.

Fast Downward planning system (Helmert 2006) includes
the portfolios FD-Autotune and FD Stone Soup with sev-
eral configurations. Each of these portfolios is a sequential
portfolio planner that uses various heuristics and search al-
gorithms. These algorithms are run consecutively for a total
time of 1800 seconds. Each solver communicates to the fol-
lowing one the quality of the solutions found, and such value
is used to improve the performance of the next solver. The
same configuration is used for all the problems in the same
domain. To learn the configuration, the authors used the re-
sults of different planning competitions, as we expect to do
in the future.

Another portfolio, named PbP (Gerevini, Saetti, and Val-
lati 2009), learns a portfolio for a specific domain. PbP
is not just a portfolio, because it also learns macro-actions
for each domain and generate some portfolio configurations
with them. Then, it runs the best three configurations in a
round-robin strategy. This portfolio incorporate seven plan-



ners (Fast Downward, LPg-td, Macro-FF, Marvin, Metric-
FF, SGPlan5, YAHSP). In a later version (PbP2 (Gerevini,
Saetti, and Vallati 2011)) the authors introduced LAMA-
2008 in the set of base planners. This portfolio won the
learning track in the last IPC competition.

HYDRA (Xu, Hoos, and Leyton-Brown 2010) is a au-
tomated algorithm that combines portfolio-based algorithm
selection with automatic algorithm configuration. They be-
gin identifying a single configuration for a single problem,
and spend all the time in this configuration. The configura-
tion portfolios based only on a single highly parametrized
SLS algorithm, SATenstein-LS (KhudaBukhsh et al. 2009).
The main difference to our work is that these portfolios are
focused on solving SAT problems.

ArvanHerd (Valenzano et al. 2012) is a satisfying parallel
planner that won the last sequential multi-core track. This
portfolio uses as base planners four configurations of the
planner Arvand (Nakhost, Valenzano, and Xie 2011) an one
configuration of LAMA-2008. In this case, the portfolio is
fixed and it does not need to choose a subset of planners to
run.

Conclusions and Future Work
In this work we have completed an analysis of the IPC-2011
result with a data mining methodology. With this analysis
we built classification models for predicting whether a plan-
ner will success or not in a given problem, and regression
models for predicting the time a planner will need to solve
a given problem. We have introduced a set of elaborated
features that come from the causal graphs and the domain
transition graphs of the SAS+ formulation. The results have
shown that these features are relevant for partially charac-
terizing the complexity of the planning problems. Besides,
these features are easy to compute, therefore they can be
extracted in a pre-processing stage of a planning process.
Then, the features are used to query a learned model for de-
ciding the set of planners to use and the time they must be
run.

We have defined a set of strategies to configure the portfo-
lio and evaluated them with the problems of the IPC-2011.
The results have shown that in 181 cases of 280, there ex-
ists at least a solution with better quality than that offered
by LAMA-2011. This means that although LAMA-2011 is
the planner that solves more problems, it is not the planner
which provides the best plans. In addition, the ideal planner
combination with all the planners in the competition solved
more problems than the winner (17 problems).

With the analisys of the results, we have shown that the
portfolios of planners are interesting in automated planning
because there is not a best planner for all domains. The com-
bination of the best planner in each domain is the perfect
strategy, but this strategy is very difficult to obtain. The pro-
posed option is learning what are the right planners to select,
and we demonstrate that it is very close to that optimal solu-
tion. The results show that our strategies solved at least the
80% of the problems for previously unseen domains (leave
one domain out evaluation). When affording new problems
in known domains (split evaluation) the success raises over
92% in all the strategies.

In the future, we will try to learn better models for un-
known domains to improve the performance of the portfolio.
To achieve this goal, several strategies may be followed. A
first one is to learn with more domains, so training data will
cover a wider area of the domain space. A second one is to
create new features that characterize the problems, as well
as to apply feature selection approaches, to improve gener-
alization capabilities. A third one is to perform a selection
of the planners a priori, so we can discard planners that does
not contribute to the global performance.

Acknowledgments
This work was partially supported by several Spanish
projects: TIN2012-38079-C03-02, TIN2011-27652-C03-02
and TSI-090302-2011-6.

References
Backstrom, C., and Nebel, B. 1995. Complexity results for SAS+
planning. Computational Intelligence 11:625–655.
Briscoe, G., and Caelli, T. 1996. A Compendium of Machine Learn-
ing: Symbolic Machine Learning, volume 1. Ablex Pub.
Browne, M. 2000. Cross-validation methods. Journal of Mathe-
matical Psychology 44(1):108–132.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2012. Mining
ipc-2011 results. In Proceedings of the Third Workshop on the
International Planning Competition.
Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.;
Shearer, C.; and Wirth, R. 2000. Crisp-dm 1.0 step-by-step data
mining guide. http:///www.crip-dm.oprg/.
Cristianini, N., and Shawe-Taylor, J. 2000. An Introduction to
Support Vector Machines. Cambridge University Press.
Dietterich, T. 2000. Ensemble methods in machine learning. Mul-
tiple classifier systems 1–15.
Frank, E., and Witten, I. H. 1998. Generating accurate rule sets
without global optimization. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learnin.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic algo-
rithm portfolios. Annals of Mathematics and Artificial Intelligence,
47 3(4):295–328.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An automatically
configurable portfolio-based planner with macro-actions: PbP. In
Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS-09).
Gerevini, A.; Saetti, A.; and Vallati, M. 2011. Pbp2: Automatic
configuration of a portfolio-based multi-planner. The 2011 Inter-
national Planning Competition.
Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research 26(1):191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
Howe, A.; Dahlman, E.; Hansen, C.; Scheetz, M.; and
Von Mayrhauser, A. 2000. Exploiting competitive planner per-
formance. Recent Advances in AI Planning 62–72.
KhudaBukhsh, A.; Xu, L.; Hoos, H.; and Leyton-Brown, K. 2009.
Satenstein: Automatically building local search sat solvers from
components. Proc. of IJCAI-09 517–524.
López, C. L. 2011. The seventh international planning com-
petition documentation. Technical report, Universidad Carlos III



de Madrid, Madrid, Spain. http://www.plg.inf.uc3m.es/ipc2011-
deterministic/FrontPage/Software.
Nakhost, H.; Valenzano, R.; and Xie, F. 2011. Arvand: the art of
random walks. The 2011 International Planning Competition 15.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. JAIR 39:127–177.
Shevade, S.; Keerthi, S.; Bhattacharyya, C.; and Murthy, K. 2000.
Improvements to the smo algorithm for svm regression. Neural
Networks, IEEE Transactions on 11(5):1188–1193.
Valenzano, R.; Nakhost, H.; Muller, M.; Schaeffer, J.; and Sturte-
vant, N. 2012. Arvandherd: Parallel planning with a portfolio. In
ECAI 2012 - 20th European Conference on Artificial Intelligence.,
786–791. IOS Press.
Wang, Y., and Witten, I. 1996. Induction of model trees for pre-
dicting continuous classes. Technical Report Working Paper 96/23,
The University of Waikato.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical Machine
Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2007. Satzilla-
07: The design and analysis of an algorithm portfolio for SAT. In
Proceedings of the 13th CP Conference.
Xu, L.; Hoos, H.; and Leyton-Brown, K. 2010. Hydra: Auto-
matically configuring algorithms for portfolio-based selection. In
Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2010), 210–216.


